Фэндом

Математика

Закон больших чисел

перенаправлено с «Усиленный закон больших чисел»

1459статей на
этой вики
Добавить новую страницу
Обсуждение0 Поделиться

Закон больших чисел в теории вероятностей утверждает, что эмпирическое среднее (среднее арифметическое) конечной выборки из фиксированного распределения близко к теоретическому среднему (математическому ожиданию) этого распределения. В зависимости от вида сходимости различают слабый закон больших чисел, когда имеет место сходимость по вероятности, и усиленный закон больших чисел, когда имеет место сходимость почти наверняка.

Cлабый закон больших чиселПравить

Пусть есть бесконечная последовательность одинаково распределённых и некоррелированных случайных величин \{X_i\}_{i=1}^{\infty}, определённых на одном вероятностном пространстве (\Omega,\mathcal{F},\mathbb{P}). То есть \mathrm{cov}(X_i,X_j) = 0,\; \forall i \not=j. Пусть \mathbb{E}X_i = \mu,\; \forall i\in \mathbb{N}. Обозначим S_n выборочное среднее первых n членов:

S_n = \frac{1}{n} \sum\limits_{i=1}^n X_i,\; n \in \mathbb{N}.

Тогда S_n \to^{\!\!\!\!\!\! \mathbb{P}} \mu.

Усиленный закон больших чиселПравить

Пусть есть бесконечная последовательность независимых одинаково распределённых случайных величин \{X_i\}_{i=1}^{\infty}, определённых на одном вероятностном пространстве (\Omega,\mathcal{F},\mathbb{P}). Пусть \mathbb{E}X_i = \mu,\; \forall i\in \mathbb{N}. Обозначим S_n выборочное среднее первых n членов:

S_n = \frac{1}{n} \sum\limits_{i=1}^n X_i,\; n \in \mathbb{N}.

Тогда S_n \to \muне почти наверное.



Эта статья содержит материал из статьи Закон больших чисел русской Википедии.

Обнаружено использование расширения AdBlock.


Викия — это свободный ресурс, который существует и развивается за счёт рекламы. Для блокирующих рекламу пользователей мы предоставляем модифицированную версию сайта.

Викия не будет доступна для последующих модификаций. Если вы желаете продолжать работать со страницей, то, пожалуйста, отключите расширение для блокировки рекламы.

Также на Фэндоме

Случайная вики