Викия

Математика

Теоремы Гёделя о неполноте

1457статей на
этой вики
Добавить новую страницу
Обсуждение0 Поделиться

Обнаружено использование расширения AdBlock.


Викия — это свободный ресурс, который существует и развивается за счёт рекламы. Для блокирующих рекламу пользователей мы предоставляем модифицированную версию сайта.

Викия не будет доступна для последующих модификаций. Если вы желаете продолжать работать со страницей, то, пожалуйста, отключите расширение для блокировки рекламы.

Теоремы Гёделя о неполноте — две теоремы математической логики о неполноте формальных систем определённого рода.

Первая теорема Гёделя о неполноте Править

Во всякой достаточно богатой непротиворечивой теории первого порядка (в частности, во всякой непротиворечивой теории, включающей формальную арифметику), существует такая замкнутая формула F, что ни F, ни \neg F не являются выводимыми в этой теории. Теоремы Гёделя о неполноте/рамка Иначе говоря, в любой достаточно сложной непротиворечивой теории существует утверждение, которое средствами самой теории невозможно ни доказать, ни опровергнуть. Например, такое утверждение можно добавить к системе аксиом, оставив её непротиворечивой. При этом, для новой теории (с увеличенным количеством аксиом) также будет существовать недоказуемое и неопровержимое утверждение.

Теорема была доказана Куртом Гёделем в 1931 году.

Вторая теорема Гёделя о неполноте Править

Во всякой достаточно богатой непротиворечивой теории первого порядка (в частности, во всякой непротиворечивой теории, включающей формальную арифметику), формула, утверждающая непротиворечивость этой теории, не является выводимой в ней. Теоремы Гёделя о неполноте/рамка Иными словами, непротиворечивость достаточно богатой теории не может быть доказана средствами этой теории. Однако вполне может оказаться, что непротиворечивость одной конкретной теории может быть установлена средствами другой, более мощной формальной теории. Но тогда встаёт вопрос о непротиворечивости этой второй теории, и т. д.

Эта теорема имеет широкие последствия как для математики, так и для философии, в частности, для онтологии и философии науки.

Литература Править

См. также Править

Ссылки Править

ca:Teorema d'incompletesa de Gödel cs:Gödelovy věty o neúplnostieo:Teoremoj de nekompletecofa:قضایای ناتمامیت گودلgl:Teorema da incompletude de Gödel he:משפטי אי השלמות של גדל hu:Gödel első nemteljességi tétele io:Godel-teorioka:გოდელის არასრულობის თეორემებიnl:Onvolledigheidsstellingen van Gödel nov:Teoreme de Godel pl:Twierdzenie Gödlask:Gödelova veta o neúplnosti sr:Геделове теореме о непотпуности sv:Gödels ofullständighetssats th:ทฤษฎีบทความไม่สมบูรณ์ของเกอเดลuk:Теореми Геделя про неповноту

Викия-сеть

Случайная вики