Викия

Математика

Сэмплирование по Гиббсу

1457статей на
этой вики
Добавить новую страницу
Обсуждение0 Share

Обнаружено использование расширения AdBlock.


Викия — это свободный ресурс, который существует и развивается за счёт рекламы. Для блокирующих рекламу пользователей мы предоставляем модифицированную версию сайта.

Викия не будет доступна для последующих модификаций. Если вы желаете продолжать работать со страницей, то, пожалуйста, отключите расширение для блокировки рекламы.

Шаблон:Изолированная статья

Сэмплирование по Гиббсу — алгоритм для генерации выборки совместного распределения множества случайных величин. Он используется для оценки совместного распределения и для вычисления интегралов. Этот алгоритм является частным случаем алгоритма Метрополиса-Гастингса и назван в честь физика Д. У. Гиббса.

Сэмплирование по Гиббсу замечательно тем, что для него не требуется явно выраженное совместное распределение, а нужны лишь условные вероятности для каждой переменной, входящей в распределение. Алгоритм на каждом шаге берет одну случайную величину и выбирает ее значение при условии фиксированных остальных. Можно показать, что последовательность получаемых значений образуют возвратную цепь Маркова, устойчивое распределение которой является как раз искомым совместным распределением.

Сэмплирование по Гиббсу особенно хорошо используется для работы с апостериорной вероятностью в байесовских сетях, поскольку в них заданы все необходимые условные вероятности.

Алгоритм Править

Пусть есть совместное распределение p(x_1,...,x_d) d случайных величин, причем d может быть очень большим. Пусть на шаге t мы уже выбрали какое-то значение X = \{x^t_i\}. На каждом шаге делаются следующие действия:

  1. Выбирается индекс i: (1 \le i \le d).
  2. x^{t+1}_i выбирается по распределению p(x_i | x^{t}_1,...,x^{t}_{i-1},x^{t}_{i+1},...,x^t_n), а для остальных индексов значение не меняется: x^{t+1}_j = x^t_j (j≠i).

На практике обычно индекс выбирают не случайно, а последовательно. Алгоритм прост и не требует никаких специальных знаний и предположений, поэтому он популярен.

Ссылки Править

Гиббс в байесовских сетях - the BUGS Project

См. также Править

Алгоритм Метрополиса-Гастингса

Викия-сеть

Случайная вики