Викия

Математика

Случайная величина

1457статей на
этой вики
Добавить новую страницу
Обсуждение0 Поделиться

Обнаружено использование расширения AdBlock.


Викия — это свободный ресурс, который существует и развивается за счёт рекламы. Для блокирующих рекламу пользователей мы предоставляем модифицированную версию сайта.

Викия не будет доступна для последующих модификаций. Если вы желаете продолжать работать со страницей, то, пожалуйста, отключите расширение для блокировки рекламы.

Случайная величина — одно из основных понятий теории вероятностей. Случайная величина — это измеримая функция, заданная на каком-либо вероятностном пространстве.

ВведениеПравить

Наряду со случайными событиями, как фактами в схеме испытаний, характеризующими ее качественно, результаты опытов можно описать количественно. Это и ведет к понятию случайной величины в теории вероятностей. Фактически, всегда результаты опытов со схемой можно представить количественно с помощью одной или нескольких числовых величин. Так, в конечных схемах описаний вместо самих элементарных исходов можно рассматривать их номиналы (идентификаторы). Например, при бросании монеты «решка» — это 0, а «герб» — это 1; при бросании игральной кости результаты — суть номера граней от 1 до 6 и т. п.

В бесконечных схемах (дискретных или непрерывных) уже изначально элементарные исходы удобно описывать количественно. Например, номера градаций типов несчастных случаев при анализе ДТП; рост призывников при наборе в армию; время безотказной работы прибора при контроле качества и т. п.

Числовые значения, описывающие результаты опытов, могут характеризовать не обязательно отдельные элементарные исходы в схеме испытаний, но и соответствовать каким-то более сложным событиям. С одной стороны, с одной схемой испытаний и с отдельными событиями в ней одновременно может быть связано сразу несколько числовых величин, которые требуется анализировать совместно. Например, координаты (абсцисса, ордината) какого-то разрыва снаряда при стрельбе по наземной цели; метрические размеры (длина, ширина и т. д.) детали при контроле качества; результаты медобследования (температура, давление, пульс и пр.) при диагностике больного; данные переписи населения (по возрасту, полу, достатку и пр.).

Поскольку значения числовых характеристик схем испытания соответствуют в схеме некоторым случайным событиям (с их определенными вероятностями), то и сами эти значения являются случайными (с теми же вероятностями). Поэтому такие числовые характеристики и принято называть случайными величинами. При этом расклад вероятностей по значениям случайной величины называется законом распределения случайной величины.

На схеме испытаний может быть определена как отдельная случайная величина (одномерная/скалярная), так и целая система одномерных взаимосвязанных случайных величин (многомерная/векторная). Перечень возможных значений (спектр) каждой одномерной случайной величины может быть как дискретным (конечным/бесконечным), так и непрерывным, а также комбинированным — в зависимости от характера распределения вероятностной массы материальных точек схем испытаний по значениям случайной величины.

ОпределениеПравить

Пусть (\Omega,\mathcal{F}, \mathbb{P})вероятностное пространство. Функция X:\Omega \to \mathbb{R}, измеримая относительно \mathcal{F} и борелевской σ-алгебры на \mathbb{R}, называется случайной величиной.

Вероятностное поведение случайной величины полностью описывается её распределением.

Простейшие обобщенияПравить

Случайная величина, вообще говоря, может принимать значения в любом измеримом пространстве. Тогда её чаще называют случайным вектором или случайным элементом. Например,

  • Измеримая функция X:\Omega \to \mathbb{R}^n называется n-мерным случайным вектором (относительно борелевской σ-алгебры на \mathbb{R}^n).
  • Измеримая функция X:\Omega \to \mathbb{C}^n называется n-мерным комплексным случайным вектором (также относительно соответствующей борелевской σ-алгебры).
  • Измеримая функция, отображающая вероятностное пространство в пространство подмножеств некоторого (конечного) множества, называется (конечным) случайным множеством.

См. также Править

cs:Náhodná veličina da:Stokastisk variabelel:Τυχαία μεταβλητήeo:Hazarda variablofa:متغیر تصادفیhe:משתנה מקריnl:Stochastische variabele no:Stokastisk variabel pl:Zmienna losowasv:Stokastisk variabel uk:Випадкова величина ur:تصادفی متغیر vi:Biến ngẫu nhiên

Викия-сеть

Случайная вики