Викия

Математика

Распределение хи-квадрат

1457статей на
этой вики
Добавить новую страницу
Обсуждение0 Поделиться

Обнаружено использование расширения AdBlock.


Викия — это свободный ресурс, который существует и развивается за счёт рекламы. Для блокирующих рекламу пользователей мы предоставляем модифицированную версию сайта.

Викия не будет доступна для последующих модификаций. Если вы желаете продолжать работать со страницей, то, пожалуйста, отключите расширение для блокировки рекламы.

Распределение хи-квадрат
Плотность вероятности
325px
k - число степеней свободы
Функция распределения
325px
k - число степеней свободы
Параметры n > 0\, число степеней свободы
Носитель x \in [0; +\infty)\,
Плотность вероятности \frac{(1/2)^{n/2}}{\Gamma(n/2)} x^{n/2 - 1} e^{-x/2}\,
Функция распределения \frac{\gamma(n/2,x/2)}{\Gamma(n/2)}\,
Математическое ожидание n\,
Медиана примерно n-2/3\,
Мода n-2\, если n\geq 2\,
Дисперсия 2\,n\,
Коэффициент асимметрии \sqrt{8/n}\,
Коэффициент эксцесса 12/n\,
Информационная энтропия \frac{n}{2}\!+\!\ln\left[2\Gamma\left({n \over 2}\right)\right]\!+\!\left(1\!-\!\frac{n}{2}\right)\psi\left(\frac{n}{2}\right)

\psi(x) = \Gamma'(x) / \Gamma(x).

Производящая функция моментов (1-2\,t)^{-n/2}, если 2\,t<1\,
Характеристическая функция (1-2\,i\,t)^{-n/2}\,

Распределение \chi^2 (хи-квадрат) с n степенями свободы — это распределение суммы квадратов n независимых стандартных нормальных случайных величин.

Определение Править

Пусть X_1, \ldots, X_n — совместно независимые стандартные нормальные случайные величины, то есть: X_i \sim N(0,1). Тогда случайная величина

Y = X_1^2 + \cdots + X_n^2

имеет распределение хи-квадрат с n степенями свободы, обозначаемое \chi^2(n).

Замечание. Распределение хи-квадрат является частным случаем Гамма распределения:

\chi^2(n) \equiv \Gamma\left({1 \over 2}, {n \over 2}\right).

Следовательно, плотность распределения хи-квадрат имеет вид

f_{\chi^2(n)}(x) = \frac{(1/2)^{n \over 2}}{\Gamma\left({n \over 2}\right)}\, x^{{n \over 2} - 1}\, e^{-\frac{x}{2}},

а его функция распределения

F_{\chi^2(n)}(x) = \frac{\gamma\left({n \over 2}, {x \over 2}\right)}{\Gamma\left({n \over 2}\right)},

где \Gamma и \gamma обозначают соответственно полную и неполную гамма-функции.

Свойства распределения хи-квадрат Править

  • Распределение хи-квадрат устойчиво относительно суммирования. Если Y_1, Y_2 независимы, и Y_1 \sim \chi^2(n_1), а Y_2 \sim \chi^2(n_2), то
Y_1 + Y_2 \sim \chi^2(n_1 + n_2).
  • Из определения легко получить моменты распределения хи-квадрат. Если Y \sim \chi^2(n), то
\mathbb{E}[Y] = n,
\mathrm{D}[Y] = 2n.
\frac{Y-n}{\sqrt{2n}} \to N(0,1) по распределению при n \to \infty.

Связь с другими распределениями Править

  • Если X_1 ,\ldots , X_n независимые нормальные случайные величины, то есть: X_i \sim N(\mu,\sigma^2),\; i=1,\ldots, n, то случайная величина
Y = \sum_{i=1}^n \left(\frac{X - \mu}{\sigma}\right)^2

имеет распределение хи-квадрат.

 \chi^2(2) \equiv \mathrm{Exp}(2).
  • Если Y_1 \sim \chi^2(n_1) и Y_2 \sim \chi^2(n_2), то случайная величина
F = \frac{Y_1/n_1}{Y_2 / n_2}

имеет распределение Фишера со степенями свободы (n_1,n_2).

Процентили Править

См. также основную статью: Процентили распределения хи-квадрат


Вероятностные распределения
Одномерные Многомерные
Дискретные: Бернулли | биномиальное | геометрическое | гипергеометрическое | логарифмическое | отрицательное биномиальное | Пуассона | равномерное мультиномиальное
Абсолютно непрерывные: Бета | Вейбулла | Гамма | Колмогорова | Коши | логнормальное | Лоренца | нормальное (Гаусса) | равномерное | Парето | Стьюдента | Фишера | хи-квадрат | экспоненциальное | Эрланга многомерное нормальное
править

ca:Distribució khi quadrat cs:Χ² rozdělenínl:Chi-kwadraatverdeling pl:Rozkład chi kwadratsimple:Chi-square distribution su:Sebaran chi-kuadrat sv:Chitvåfördelning

Викия-сеть

Случайная вики