Викия

Математика

Признак Жордана

1457статей на
этой вики
Добавить новую страницу
Обсуждение0 Share

Обнаружено использование расширения AdBlock.


Викия — это свободный ресурс, который существует и развивается за счёт рекламы. Для блокирующих рекламу пользователей мы предоставляем модифицированную версию сайта.

Викия не будет доступна для последующих модификаций. Если вы желаете продолжать работать со страницей, то, пожалуйста, отключите расширение для блокировки рекламы.

Шаблон:Сирота

Признак Жордана — признак сходимости рядов Фурье: если 2\pi-периодическая функция f(x) имеет ограниченную вариацию на отрезке [a,\ b], то ее ряд Фурье сходится в каждой точке x \mathcal{2}(a,~b) к числу {1 \over 2} [f(x+0)+f(x-0)]; если при этом функция f(x) непрерывна на отрезке [a,\ b], то ее ряд Фурье сходится к ней равномерно на всяком отрезке [a',\ b'], строго внутреннем к [a,\ b]. Признак Жордана установлен К. Жорданом. Он обобщает теорему Дирихле о сходимости рядов Фурье кусочно монотонных функций.

Литература Править

  • Jordan C. «C. r. Acad. sci.», 1881, t. 92, p. 228—230
  • Бари Н. К. Тригонометрические ряды, М., 1961, с. 121

Викия-сеть

Случайная вики