Викия

Математика

Преобразования Лоренца

1457статей на
этой вики
Добавить новую страницу
Обсуждение0 Поделиться

Обнаружено использование расширения AdBlock.


Викия — это свободный ресурс, который существует и развивается за счёт рекламы. Для блокирующих рекламу пользователей мы предоставляем модифицированную версию сайта.

Викия не будет доступна для последующих модификаций. Если вы желаете продолжать работать со страницей, то, пожалуйста, отключите расширение для блокировки рекламы.

Преобразования Лоренца — математические преобразования в специальной теории относительности, которым подвергаются галилеевы координаты события при переходе от одной инерциальной системы отсчёта (ИСО) — к другой. Образуют группу — так называемую группу Пуанкаре.

Иногда под преобразованиями Лоренца понимают только частный случай преобразований: от одной ИСО к другой, когда начала отсчёта обоих ИСО совпадают. Эти преобразования также образуют группу — группу Лоренца, которая является подгруппой группы Пуанкаре.

Вид преобразований при коллинеарных осях Править

Если ИСО K' движется относительно ИСО K с постоянной скоростью V вдоль оси x, а начала координат совпадают в начальный момент времени в обеих системах, то преобразования Лоренца (обратные) имеют вид:

x=\frac{x'+Vt'}{\sqrt{1-V^2/c^2}}, y=y', z=z', t=\frac{t'+(V/c^2)x'}{\sqrt{1-V^2/c^2}},

где c — скорость света в вакууме.

Формулы, выражающие обратное преобразование, то есть, x',y',z',t' через x,y,z,t можно получить заменой V на V' = -V.

Вид преобразований при произвольной ориентации осей Править

В силу произвольности введения осей координат, многие задачи можно свести к указанному случаю. Если же задача требует иного расположения осей, то можно воспользоваться формулами преобразований в более общем случае. Для этого радиус-вектор точки

\mathbf{r'} = \mathbf{i}x' + \mathbf{j}y' + \mathbf{k}z' ,

где \mathbf{i}, \mathbf{j}, \mathbf{k} — орты, надо разбить на составляющую \mathbf{r'_\|} параллельную скорости и составляющую \mathbf{r'_\perp} ей перпендикулярную

\mathbf{r'} = \mathbf{r'_\|} + \mathbf{r'_\perp}.

Тогда преобразования получат вид

\mathbf{r_\|}=\frac{\mathbf{r'_\|}+\mathbf{v}t'}{\sqrt{1-v^2/c^2}}, \mathbf{r_\perp}=\mathbf{r'_\perp}, t=\frac{t'+(v/c^2)r_\|}{\sqrt{1-v^2/c^2}},

где v = V = \left| \mathbf{v} \right| — абсолютная величина скорости, r_\| = \left| \mathbf{r_\|} \right| — абсолютная величина продольной составляющей радиус-вектора.

Эти формулы для случая параллельных осей, но с произвольно направленной скоростью, можно преобразовать к виду, впервые полученному Герглоцем:

\mathbf{r} = \mathbf{r'} + \frac{1}{v^2}\left( \frac{1-\sqrt{1-v^2/c^2}}{\sqrt{1-v^2/c^2}} \right)(\mathbf{r'v})\mathbf{v} + \frac{\mathbf{v}t'}{\sqrt{1-v^2/c^2}}, t=\frac{t'+\mathbf{r'v}/c^2}{\sqrt{1-V^2/c^2}}.

Обратите внимание, что самый общий случай, когда начала координат не совпадают в нулевой момент времени, здесь не приведён с целью экономии места. Его можно получить, добавив к преобразованиям Лоренца линейные преобразования.

Преобразования Лоренца в матричном виде Править

Для случая коллинеарных осей преобразования Лоренца записываются в виде


\begin{bmatrix}
c t' \\x' \\y' \\z'
\end{bmatrix}
=
\begin{bmatrix}
\gamma&\frac{v}{c} \gamma&0&0\\
\frac{v}{c} \gamma&\gamma&0&0\\
0&0&1&0\\
0&0&0&1\\
\end{bmatrix}
\begin{bmatrix}
c t\\x\\y\\z
\end{bmatrix}.
,

где \gamma \equiv \frac{1}{\sqrt{1 - v^2/c^2}}.

Свойства преобразований Лоренца Править

Можно заметить, что в случае, когда c\rightarrow\infty, преобразования Лоренца переходят в преобразования Галилея. То же самое происходит в случае, когда v/c\rightarrow0. Это говорит о том, что специальная теория относительности совпадает с механикой Ньютона либо в мире с бесконечной скоростью света, либо при скоростях, малых по сравнению со скоростью света. Последее объясняет, каким образом сочетаются эти две теории — первая является уточнением второй.

Связанные определения Править

Лоренц-инвариантность — свойство физических законов записываться одинаково во всех инерциальных системах отсчета(с учетом преобразований Лоренца). Принято считать, что этим свойством должны обладать все физические законы. Однако некоторые теории, например квантовую механику, пока не удается построить так, чтобы выполнялась Лоренц-инвариантность.

История Править

Преобразования названы в честь их первооткрывателя — Х. А. Лоренца, который вывел их, чтобы устранить противоречия между электродинамикой и механикой Ньютона. В 1900 г. он обнаружил, что эти преобразования оставляют инвариантными уравнения Максвелла. Сам Лоренц верил в светоносный эфир и только Эйнштейн в своей теории относительности пришёл к современной трактовке этих преобразований.

Преобразования Лоренца были впервые опубликованы в 1904 г. но в то время их форма была несовершенна. К современному, полностью самосогласованному виду их привёл французский математик А. Пуанкаре.

Литература Править

Ф. И. Фёдоров. Группа Лоренца. М.: Наука, 1979. 384 с.ar:تحويلات لورينتز ca:Transformació de Lorentz cs:Lorentzova transformace da:Lorentz-transformationel:Μετασχηματισμοί Λόρεντζet:Lorentzi teisendused fa:تبدیلات لورنتسgl:Transformación de Lorentz he:טרנספורמציות לורנץnl:Lorentztransformatie pl:Transformacja Lorentzask:Lorentzova transformácia sl:Lorentzova transformacija sv:Lorentztransformation uk:Перетворення Лоренца

Викия-сеть

Случайная вики