Викия

Математика

Покрытие

1457статей на
этой вики
Добавить новую страницу
Обсуждение0 Share

Обнаружено использование расширения AdBlock.


Викия — это свободный ресурс, который существует и развивается за счёт рекламы. Для блокирующих рекламу пользователей мы предоставляем модифицированную версию сайта.

Викия не будет доступна для последующих модификаций. Если вы желаете продолжать работать со страницей, то, пожалуйста, отключите расширение для блокировки рекламы.

Покры́тие в математике — это семейство множеств таких, что их объединение содержит заданное множество. Обычно понятие покрытия рассматривается в контексте общей топологии.

Определения Править

  • Пусть дано множество X. Семейство множеств C = \{U_{\alpha}\}_{\alpha \in A} называется покрытием X, если
X \subset \bigcup\limits_{\alpha \in A} U_{\alpha}.
Y \subset \bigcup\limits_{\alpha \in A} U_{\alpha}.

Связанные определения Править

  • Если C — покрытие множества Y, то любое подмножество D \subset C, также являющееся покрытием Y, называется подпокры́тием.
  • Если каждый элемент одного покрытия является подмножеством какого либо элемента второго покрытия, то говорят, что первое покрытия впи́сано во второе. Более точно, покрытие D = \{V_{\beta}\}_{\beta \in B} вписано в покрытие C = \{U_{\alpha}\}_{\alpha \in A}, если
\forall \beta \in B\; \exists \alpha \in A такое, что V_{\beta} \subset U_{\alpha}.
  • Покрытие C=\{U_{\alpha}\}_{\alpha \in A} множества Y называется лока́льно коне́чным, если для каждой точки y\in Y существует окрестность U \ni y, пересекающаяся лишь с конечным числом элементов C, то есть множество \{\alpha \in A \mid  U_{\alpha} \cap U \not= \emptyset \} конечно.
  • Y называется компактным, если любое его открытое покрытие содержит конечное подпокрытие;
  • Y называется паракомпактным, если в любое его открытое покрытие можно вписать локально конечное открытое покрытие.

Свойства Править

  • Любое подпокрытие вписано в изначальное покрытие. Обратное, вообще говоря, неверно.

См. также Править


Эта статья содержит материал из статьи Покрытие русской Википедии.

Викия-сеть

Случайная вики