Викия

Математика

Плотность вероятности

1457статей на
этой вики
Добавить новую страницу
Обсуждение0 Поделиться

Обнаружено использование расширения AdBlock.


Викия — это свободный ресурс, который существует и развивается за счёт рекламы. Для блокирующих рекламу пользователей мы предоставляем модифицированную версию сайта.

Викия не будет доступна для последующих модификаций. Если вы желаете продолжать работать со страницей, то, пожалуйста, отключите расширение для блокировки рекламы.

Пло́тность вероя́тности — один из способов задания вероятностной меры на евклидовом пространстве \mathbb{R}^n. В случае когда вероятностная мера является распределением случайной величины, говорят о плотности случайной величины.

Плотность вероятности Править

Пусть \mathbb{P} является вероятностной мерой на \mathbb{R}^n, то есть определено вероятностное пространство \left(\mathbb{R}^n,\mathcal{B}(\mathbb{R}^n),\mathbb{P}\right), где \mathcal{B}(\mathbb{R}^n) обозначает борелевскую σ-алгебру на \mathbb{R}^n. Пусть m обозначает меру Лебега на \mathbb{R}^n.

Определение 1. Вероятность \mathbb{P} называется абсолютно непрерывной (относительно меры Лебега) (\mathbb{P} \ll m), если любое борелевское множество нулевой меры Лебега также имеет вероятность нуль:

\forall B \in \mathcal{B}(\mathbb{R}^n),\; ( m(B) = 0 ) \Rightarrow ( \mathbb{P}(B) = 0 ) .

Если вероятность \mathbb{P} абсолютно непрерывна, то согласно теореме Радона-Никодима существует неотрицательная борелевская функция f:\mathbb{R} \to [0,\infty) такая, что

\mathbb{P}(B) = \int\limits_{B} f(x)\, dx,

где использовано общепринятое сокращение m(dx) \equiv dx, и интеграл понимается в смысле Лебега.

Определение 2. Функция f, определённая выше, называется производной Радона-Никодима вероятности \mathbb{P} относительно меры m или плотностью вероятности \mathbb{P} (относительно меры m):

f = \frac{d\mathbb{P}}{dx}.

Свойства плотности вероятности Править

  • Плотность вероятности определена почти всюду. Если f является плотностью вероятности \mathbb{P} и f(x) = g(x) почти всюду относительно меры Лебега, то и функция g также является плотностью вероятности \mathbb{P}.
  • Интеграл от плотности по всему пространству равен единице:
\mathbb{P}\left(\mathbb{R}^n\right) = \int\limits_{\mathbb{R}^n} f(x)\, dx = 1.

Обратно, если f(x) — неотрицательная п.в. функция, такая что \int_{\mathbb{R}^n}f(x)\, dx = 1, то существует абсолютно непрерывная вероятностная мера \mathbb{P} на \mathbb{R}^n такая, что f(x) является её плотностью.

  • Замена меры в интеграле Лебега:
\int\limits_{\mathbb{R}^n} \varphi(x)\, \mathbb{P}(dx) = \int\limits_{\mathbb{R}^n}\varphi(x)\, f(x)\, dx,

где \varphi:\mathbb{R}^n \to \mathbb{R} любая борелевская функция, интегрируемая относительно вероятностной меры \mathbb{P}.

Плотность случайной величины Править

Пусть определено произвольное вероятностное пространство (\Omega,\mathcal{F},\mathbb{P}), и X:\Omega \to \mathbb{R}^n случайная величина (или случайный вектор). X индуцирует вероятностную меру \mathbb{P}^X на \left(\mathbb{R}^n,\mathcal{B}(\mathbb{R}^n)\right), называемую распределением случайной величины X.

Определение 3. Если распределение \mathbb{P}^X абсолютно непрерывно относительно меры Лебега, то его плотность f_X = \frac{d\mathbb{P}^X}{dx} называется плотностью случайной величины X. Сама случайная величина X называется абсолютно непрерывной.

Таким образом для абсолютно непрерывной случайной величины имеем:

\mathbb{P}(X \in B) = \int\limits_{B} f_X(x)\, dx.

Замечания Править

  • Не всякая случайная величина абсолютно непрерывна. Любое дискретное распределение, например, не является абсолютно непрерывным относительно меры Лебега, а потому дискретные случайные величины не имеют плотности.
  • Функция распределения абсолютно непрерывной случайной величины X непрерывна и может быть выражена через плотность следующим образом:
F_X(x_1,\ldots, x_n) = \mathbb{P}\left(X \in \prod\limits_{i=1}^n (-\infty,x_i]\right) = \int\limits_{-\infty}^{x_n} \!\! \ldots \!\! \int\limits_{-\infty}^{x_1} f_X(x'_1,\ldots, x'_n)\, dx'_1\ldots dx'_n.

В одномерном случае:

F_X(x) = \int\limits_{-\infty}^x f_X(x')\, dx'.

Если f_X \in C(\mathbb{R}^n), то пиздец, и

\frac{\partial^n}{\partial x_1 \ldots \partial x_n} F_X(x_1,\ldots, x_n) = f_X(x_1,\ldots, x_n).

В одномерном случае:

\frac{d}{dx} F_X(x) = f_X(x).
\mathbb{E}[g(X)] = \int\limits_{\mathbb{R}^n} g(x) \, \mathbb{P}^X(dx) = \int\limits_{\mathbb{R}^n} g(x)\, f_X(x)\, dx,

где g: \mathbb{R}^n \to \mathbb{R} — борелевская функция, так что \mathbb{E}[g(X)] определено и конечно.

Плотность преобразования случайной величины Править

Пусть X:\Omega \to \mathbb{R}^n — случайная величина, и g:\mathbb{R}^n \to \mathbb{R}^n — инъективная непрерывно дифференцируемая функция такая, что J_g(x) \not=0,\; \forall x\in \mathbb{R}^n, где J_g(x)якобиан функции g в точке x. Тогда случайная величина Y = g(X) также абсолютно непрерывна, и её плотность имеет вид:

f_Y(y) = f_X\left(g^{-1}(y)\right) \vert J_{g^{-1}}(y) \vert.

В одномерном случае:

f_Y(y) = f_X\left(g^{-1}(y)\right) \left\vert \frac{dg^{-1}}{dy}(y)\right\vert.

Примеры абсолютно непрерывных распределений Править


См. также Править


Эта статья содержит материал из статьи Плотность вероятности русской Википедии.

Викия-сеть

Случайная вики