Викия

Математика

Первообразная

1457статей на
этой вики
Добавить новую страницу
Обсуждение0 Share

Обнаружено использование расширения AdBlock.


Викия — это свободный ресурс, который существует и развивается за счёт рекламы. Для блокирующих рекламу пользователей мы предоставляем модифицированную версию сайта.

Викия не будет доступна для последующих модификаций. Если вы желаете продолжать работать со страницей, то, пожалуйста, отключите расширение для блокировки рекламы.

В математическом анализе первоо́бразной (первообра́зной) или примити́вной функцией данной функции f называюых; таких как (x³ / 3) + 0 или (x³ / 3) + 7 или (x³ / 3) − 36 … и т. д.; таким образом семейство первообразных функции x² можно обозначить как F(x) = (x³ / 3) + C, где C — любое число. Графики таких первообразных смещены вертикально друг относительно друга, и их положение зависит от значения C.

Первообразные важны тем, что позволяют вычислять интегралы. Если F — первообразная интегрируемой функции f, то:

\int_a^b f(x)\, dx = F(b) - F(a).

Это соотношение называется формулой Ньютона — Лейбница.

Благодаря этой связи множество первообразных данной функции f иногда называют общим интегралом или неопределённым интегралом f и записывают в виде интеграла без указания пределов:

\int f(x)\, dx

Если F — первообразная f, и функция f определена на каком-либо интервале, тогда каждая последующая первообразная G отличается от F на константу: всегда существует число C, такое что G(x) = F(x) + C для всех x. Число C называют постоянной интегрирования.

Каждая непрерывная функция f имеет первообразную F, которая представляется в виде интеграла от f с переменным верхним пределом:

F(x) = \int_a^x f(t)\,dt.функция F называется первообразной для функции f на заданном промежутке,если для всех Х из этого промежутка

Также существуют не непрерывные (разрывные) функции, которые имеют первообразную. Например, f(x) = 2x sin (1/x) — cos(1/x) с f(0) = 0 не непрерывна при x = 0, но имеет первообразную F(x) = x² sin(1/x) с F(0) = 0.

Некоторые первообразные, даже несмотря на то, что они существуют, не могут быть выражены через элементарные функции (такие как многочлены, экспоненциальные функции, логарифмы, тригонометрические функции, обратные тригонометрические функции и их комбинации). Например:

\int e^{-x^2}\,dx,\qquad \int \frac{\sin(x)}{x}\,dx,\qquad \int\frac{1}{\ln x}\,dx.

Более развёрнутое изложение этих фактов можно отыскать в дифференциальной теории Галуа.

Свойства первообразной Править

  • Первообразная суммы равна сумме первообразных
  • Первообразная произведения константы и функции равна произведению константы и первообразной функции
  • Достаточным условием для существования первообразной у заданной на отрезке функции f является непрерывность f.
  • Необходимыми условиями являются принадлежность функции f первому классу Бэра и выполнение для неё свойства Дарбу.
  • У заданной на отрезке функции любые две первообразные отличаются на постоянную.


Техника интегрирования Править

Нахождение первообразных значительно сложнее, чем нахождение производных. Для этого в нашем распоряжении имеется несколько методов:

Другие определения Править

Это определение является наиболее распространенным, но встречаются и другие, в которых ослаблены требования существования всюду конечной F' и выполнения всюду равенства F'(x)=f(x), иногда в определении используют обобщения производной.

Викия-сеть

Случайная вики