Викия

Математика

Парадоксы биномиального распределения

1457статей на
этой вики
Добавить новую страницу
Обсуждение6 Поделиться

Обнаружено использование расширения AdBlock.


Викия — это свободный ресурс, который существует и развивается за счёт рекламы. Для блокирующих рекламу пользователей мы предоставляем модифицированную версию сайта.

Викия не будет доступна для последующих модификаций. Если вы желаете продолжать работать со страницей, то, пожалуйста, отключите расширение для блокировки рекламы.

ИсторияПравить

"История теории вероятности содержит очень много неожиданных парадоксов. По мнению Карла Пирсона, в математике нет другого такого раздела науки, в котором так же легко совершить ошибку": см. Биномиальное распределение – 1.doc; http://gendocs.ru/v1345/Биномиальное распределение. (МИНИСТЕРСТВО РФ ПО СВЯЗИ И ИНФОРМАТИЗАЦИИ. РЕФЕРАТ по дисциплине : «Теория вероятностей» на тему: «Биномиальное распределение» Выполнил: студентка группы АБ-87 Нецветаев Т.М. Новосибирск, 2010); http://www.vixri.ru/d/Sekej%20G.%20_Paradoksy%20v%20teorii%20verojatnostej_.pdf (Секей Габор. Парадоксы в теории вероятностей и математической статистике. Будапешт, 1988. 215 С. Цитата на С. 10).

Биномиальное и полиномиальное (мультиномиальное) распределения зарождались в первой половине XIX века, когда руководящей философской идеей развития теории вероятностей было убеждение во всеобщности понятия независимости. Авторы того времени, вплоть до конца XIX века, как правило, не оговаривали это предположение [1].

Известны были только условно независимые (неравновозможные) события. Если “…встречались не все равновозможны, - пояснял В. Я. Буняковский - то чрез дробление на другие, оне могут быть приведены к равновозможным…” [2].

С появлением цепей Маркова в начале XX века (1906-1907), к сожалению, не была пересмотрена концепция этих распределений.

Главный парадокс уже не первого века: Биномиальное распределение — распределение двух случайных величин, Править

в котором первая из них является действительно независимой, а вторая случайная величина является зависимой от первой. Зависимость проявляется в том, что её пространство элементарных событий сокращается на числовое значение, принятое второй случайной величиной во второй момент времени.

Известно, что если в мультиномиальном распределении (https://ru.wikipedia.org/wiki/Multinomial_distribinion) сократить число случайных величин до двух (к=2) (см. в оригинале это выглядит так: When k = 2, the multinomial distribution is the binomial distribution), то получим биномиальное распределение https://en.wikipedia.org/wiki/Binomial_distribution.

Так сколько же на самом деле в биномиальном распределении случайных величин? Две или одна? По логике и по приведённым рассуждениям, естественно, напрашивается ответ, что две. Однако согласно энциклопедии Википедии биномиальное распределение содержит одну случайную величину. Это же явный парадокс.

Парадокс 20-го века: математическое ожидание биномиального распределения не равно np Править

Если утверждается, что биномиальное распределение — распределение одной случайной величины и что математическое ожидание этого биномиального распределения есть ни что иное, как


\mathbf{E}\xi = np,

где n — число независимых испытаний, а p — вероятность положительного исхода одного испытания, то при увеличении числа испытаний до


n>\frac{1}{p}

математическое ожидание биномиального распределения окажется больше единицы, что не допустимо, ибо согласно второй аксиоме вероятностей аксиоматики Колмогорова, вероятности всех случайных величин, включая и его математическое ожидание, обязано быть равным единице.

Парадокс 20-го века: Распределение Бернулли и биномиальное распределение — это одно и тоже и каждое из них — распределение одной случайной величины в последовательности независимых испытанийПравить

<< БИНОМИАЛЬНОЕ РАСПРЕДЕЛЕНИЕ, распределение Бернулли [3], — распределение вероятностей случайной величины X с целочисленными значениями m=0,1, \ldots,n, заданное формулой



p_m=P(X=m) =C_n^mp^m (1-p)^{n-m}

где n\ge1 и 0\le p\le 1 — параметры, а C_n^m — биномиальный коэффициент (отсюда название Б. р. ). Б. р. — одно из основных распределений вероятностей, связанных с последовательностью независимых испытаний; это — распределение вероятностей числа наступлений некоторого события (<<удачи>> ) в  n повторных независимых испытаниях, если при каждом испытании вероятность наступления этого события равна  p (см. Бернулли испытания). В соответствии с этим каждую случайную величину X, имеющую Б. р. с параметрами  n и  p можно представить в виде суммы  n независимых случайных величин, имеющих Б. р. с параметрами  n=1 и  p. Математическое ожидание и дисперсия случайной величины X с Б. р. равны EX=np и DX=np(1-p).

Многомерным обобщением Б. р. служит полиномиальное распределение. >> Конец цитаты.

Эти распределения аналогично описаны и в Большой Российской энциклопедии [4].

В начале 21-го века стало известно, что распределение Бернулли — это самостоятельное распределение в последовательности независимых испытаний. Оно почти одинаково описано в трёх электронных энциклопедиях Викизнание, Наука и Математика:

Случайная величина X имеет распределение Бернулли, если она принимает всего два значения: 1 и 0 с вероятностями p и q\equiv 1-p соответственно. Таким образом:

\mathbb{P}(X=1) = p,
\mathbb{P}(X=0) = q.

Схема Бернулли стала известна и впервые была описана в энциклопедии Математика:

Последовательность \{X_n\}_{n=1}^{\infty} независимых случайных величин, имеющих распределение Бернулли, называется схемой Бернулли. Физически схема Бернулли моделирует многократное проведение независимых реализаций одного и того же случайного эксперимента с двумя исходами: успех и неудача. Случайное событие \{X_i=1\} соответствует успеху в результате i-го испытания, а событие \{X_i=0\} соответствует неудаче ( http://ru.math.wikia.com/wiki/распределение Бернулли).

Тем не менее, и в 21-ом веке можно встретить устаревшие суждения, подобные этому: http://wiki.bks-tv.ru/wiki/Обсуждение: Биномиальное_ распределение: Формула биномиального распределения и формула Бернулли - это одно и то же или нет? -- 10:41, 14 июня 2008 (UTC) Да.109.161.126.71 10:59, 8 ноября 2010 (UTC)

Парадокс первого десятилетия 21-го века: Биномиальное распределение — распределение одной случайной величины в конечной последовательности испытаний БернуллиПравить

Во всех областях научного знания за исключением теории вероятностей приставка би (в переводе с латинского означающая сдвоенный, состоящий из двух частей) используется правильно, например, в авиации биплан самолет со сдвоенными крыльями, в оптике бинокль — сдвоенный монокль, в комбинаторике бином — двучлен, и только в современной теории вероятностей биномиальное распределение — распределение, полученное не основе бинома (двучлена), является распределением одной случайной величины… Парадокс заключается в том, что http://wikipedia.ru/wiki/биномиальное распределение традиционной интерпретации 20-го века признаётся распределением одной случайной величины, а на самом деле биномиальное распределение является распределением двух случайных величин, в котором первая случайная величина является независимой, а вторая зависима от первой. Этот парадокс возник из-за ошибки в логике рассуждений и получил повсеместное распространение с середины 20-го века. Подобно тому, как из полинома (из многочлена) методом дедукции получают бином (двучлен), а из бинома методом индукции получают полином, так и по аналогии из полиномиального распределения (из мультиномиального распределения с числом случайных величин больше двух) методом дедукции обязаны получить биномиальное распределение (распределение с двумя случайными величинами), а из биномиального распределения (из распределения с двумя случайными величинами) методом индукции обязаны получить полиномиальное распределение (распределение с числом случайных величин больше двух). Этот парадокс настолько распространён и настолько прост, что может быть проиллюстрирован на элементарных примерах.

1. Пусть в полиноме 10 членов. Сократив в нём число членов до двух, получим два:10:5=2.

2. В биноме 2 члена. Умножив их на 5, получим, что в полиноме 10 членов: 2х5=10.

3. Пусть в полиномиальном распределении 10 случайных величин. Сократив число случайных величин до двух, по аналогии обязаны получить биномиальное распределение с двумя случайными величинами: 10:5=2. Однако принято считать, что биномиальное распределение это распределение одной случайной величины, иными словами, если 10 разделить на 5, то получится один!

Это первый парадоксальный результат: 10:5=1.

4. Число случайных величин биномиального распределения традиционной интерпретации, равное одному, умножив на 5 получим, что в полиномиальном распределении 5 случайных величин: 1х5=5.

Это второй парадоксальный результат, поскольку изначально исходили из того, что в полиномиальном распределении 10 случайных величин.

Во времена В. Я. Буняковского биномиальное распределение, как распределение двух случайных величин и на его основе полиномиальное распределение (оба так ещё не называемые) впервые были опубликованы им в 1846 году [2].

В современной записи биномиальное и полиномиальное распределения Буняковского имеют следующий вид:



P(X_1=n_1, X_2=n_2)= \frac{n!}{n_1! n_2!} p_1^{n_1}p_2^{n_2},


2=k \le n< \infty, \quad n_1+n_2=n, \quad p_1+p_2=1;


P(X_1=n_1,\ldots,X_k=n_k)=\frac{n!}{n_1!\cdots n_k!}p_1^{n_1}\cdots p_k^{n_k},


2\le k \le n < \infty,\quad n_1+\ldots+n_k=n.

Парадокс второго десятилетия 21-го века: Биномиальное распределение — распределение одной случайной величины, содержащей ровно k успешно завершившихся испытаний БернуллиПравить

См., например, Галанов Ю. И. Биномиальное распределение и его предельные формы http://hm.tpu.ru/geologi/galanov/lab_mathstat/lb1/bin0.htm

29 Биномиальное распределение -YouTube http://www.youtube.com/watch?v=vKOCLpNt1vM

Изучение биномиального распределения - Exponennta.ru http://www.exponenta.ru/educat/systemat/shelomovsky/lab/lab03.asp

Биномиальное распределение и его аппроксимация http://ofim.oscsbras.ru/~klokov/probability/simulations/approx.htm

Ровно k означает только k и ни чего иного: ни больше, ни меньше, ни n-k неудачно завершённых испытаний, о чём подробно было рассмотрено в предыдущем парадоксе. Не биномиальное распределение, а распределение Пуассона определяет ровно k прошедших событий, причём параметр, определяющий среднее значение \lambda=pn, это ни что иное как математическое ожидание первой случайной величины биномиального распределения!

Если в последовательности n испытаний Бернулли k испытаний окончилось успешно с вероятностью p_1 каждого, а n-k испытаний в той же последовательности окончилось неудачно с вероятностью p_2, \quad p_1+p_2=1 каждого, то вероятность того, что k испытаний окончилось успешно, равна числу сочетаний {n \choose k} из n по k, умноженному на p_1 вероятность k успешно окончившегося одного испытания, возведённую в степень k числа уснешно завершённых испытаний: {n\choose k}p_1^k. И это есть ни что иное, как вероятность P_1( X_1=n_1) первой случайной величины, распределения двух случайных величин.

Аналогично, если в той же последовательности n испытаний Бернулли n-k испытаний окончилось неудачно с вероятностью p_2, \quad p_1+p_2=1 каждого, то вероятность того, что n-k из n-k испытаний окончились неудачно равна числу сочетаний из n-k по n-k {n-k \choose n-k}=1, умноженному на вероятность p_2 неудачно окончившегося испытания, возведённую в степень n-k числа неудачно завершённых испытаний: p_2^{(n-k)} . Это есть P_2(X_2=n_2) вероятность второй случайной величины биномиального распределения.

Произведение вероятностей первой и второй случайных величин есть вероятность биномиального распределения — распределения двух случайных величин.

Зависимость второй от первой случайной величины будет показана ниже.

Здесь же главное то, что p_1n это математическое ожидание P_1( X_1=n_1) первой случайной величины биномиального распределения — распределения двух случайных величин.

Математическое ожидание p_1n определяет равно k успешно окончившихся испытаний в последовательности n испытаний Бернулли. И эта величина аналогична \lambda=pn в распределении Пуассона, которая определяет среднее значение (ровно k событий) случайной величины.

Биномиальное распределение как задача разделения дискретного целого на две составные частиПравить

Разделение дискретного целого на две составные части случайного объёма осуществляют в последовательные моменты времени.

Дискретное целое  n, \quad 2\le n <\infty — множество дискретных элементов. Элементы различимы между собой хотя бы одним признаком и не упорядочены (хаотично расположены).

Разделение множества на два подмножества осуществляют методом выбора без возвращения — выбранные элементы множества не возвращают во множество до полного его разделения (изъятия из него элементов).

Выбор произвольного элемента множества равновероятен и равен p_i=n^{-1}, \quad i=1,\ldots,n.

В начальный момент времени t_0 , не обязательно равный нулю t_0 \ne 0, множество содержит n, 2\le n < \infty различимых неупорядоченных элементов.

В первый момент времени t_1,\quad t_1>t_0 из исходного множества, содержащего n, \quad 2\le n<\infty элементов, осуществляют выборку случайного объёма  n_1, \quad 0\le n_1\le n элементов множества.

Вероятность первой случайной величины X_1, принявшей в первый момент времени t_1 числовое значение n_1, равна числу сочетаний {n \choose n_1} из n по n_1, умноженному на вероятность выбора одного элемента p_1=n^{-1}, возведённого в степень n_1 — числа выбранных элементов



P_1(t_1,X_1=n_1)={n \choose n_1}p_1^{n_1}.

Во второй момент времени t_2\quad t_2>t_1 вторая случайная величина X_2 вынуждена принять единственно возможное значение n_2=n-n_1, поскольку в первый момент времени t_1 первая случайная величина X_1 приняла числовое значение n_1. Условная вероятность второй случайной величины P_2(t_2,X_2=n_2 \mid t_1,X_1=n_1) равна числу сочетаний {n-n_1 \choose n_2=n-n_1}= {n-n_1 \choose n-n_1}=1 из n-n_1 по n_2=n-n_1, умноженному на вероятность выбора одного элемента p_2=n^{-1}, возведённого в степень n_2— числа выбранных элементов


P_2(t_2,X_2=n_2 \mid t_1,X_1=n_1)=p_2^{n_2}.

Произведение вероятностей первой и второй случайных величин есть вероятность биномиального распределения

Таким образом, биномиальное распределение — это распределение двух случайных величин, в котором первая случайная величина является действительно независимой, а вторая зависима от первой.

Биномиальное распределение как процесс выполнения взаимосвязанных действий над объектамиПравить

Объекты: множество, его подмножества и их элементы как объективная реальность, существующая вне нас и независимо от нас.

Биномиальное распределение это:

  •   случайный процесс безвозвратного разделения последовательно во времени  t_1,\quad t_2 и в пространстве конечного  n- множества различимых неупорядоченных элементов на две части  n_1, \quad n_2 случайных объёмов, сумма которых равна объёму исходного множества:  n_1+ n_2=n, \quad 2\le n<\infty ,
  • разделение множества осуществляют выборками без возвращения (изъятые из множества элементы не возвращают обратно во множество до полного окончания экспериментов),
  • вероятность попадания одного произвольного элемента множества в каждое из подмножеств  0\le p_i<1, \quad i=1,2 принимают за вероятность успеха (успешного завершения испытания) распределения Бернулли,
  • очерёдность следования выборок принимают за нумерацию случайных величин биномиального распределения,
  • случайный объём каждой выборки  n_i, \quad i=1,2 в момент времени  t_i, \quad i=1,2 принимают за числовое значение соответствующей случайной величины  X_i=n_i, \quad i=1,2 биномиального распределения,
  • результаты каждого разбиения обрабатывают вероятностными методами, определяют технические характеристике всех выборок и принимают их за технические характеристики случайных величин биномиального распределения,
  • математическое ожидание биномиального распределения имеет место, когда число выборок k равно числу элементов  n-множества  k=n и численно равно  \frac{n!}{n^n}=\frac{2!}{2^2}=\frac{1}{2}.

Биномиальное распределение как простейшая цепь МарковаПравить

Биномиальное распределение появляется в последовательности двух испытаний, первое из них случайное независимое, а второе зависимое от первого испытания. Исходы испытаний конечны и счётны. По сути — это простейшая цепь Маркова. (X_0, называемое начальным распределением цепи Маркова, для биномиального распределения не имеет смысла t_0=0, \quad X_0=0, поскольку нумерация случайных величин начинается с единицы.)

Единственная переходная вероятность заключается в том, что вторая случайная величина X_2 во второй момент времени t_2 вынуждена принять числовое значение, равное  0\le n_2=n-n_1 , при условии, что в первый момент времени t_1 первая случайная величина X_1 приняла случайное число  0\le n_1\le n.

Следовательно и вероятность биномиального распределения



\prod_{i=1}^2P(t_i,X_i=n_i \mid t_{i-1},X_{i-1}=n_{i-1})=\frac{n!}{n_1! n_2!}p_1^{n_1}p_2^{n_2}

как произведение первой независимой и второй зависимой случайных величин является цепью Маркова.

Сумма вероятностей биномиального распределения равна единице. Следовательно, биномиальное распределение как цепь Маркова, является стахостической.

Переходная вероятность биномиального распределения является дискретной функцией. Следовательно, биномиальное распределение является марковским процессом с дискретным временем.

ЗаключениеПравить

По числу парадоксов (3) биномиальное распределение уступает только мультиномиальному (полиномиальному) распределению (как минимум 5). Главные причины возникновения парадоксов — ошибки в логике и в методе его получения. В частности, биномиальное не потому что его формула содержит биномиальные коэффициенты, а потому что оно первоначально было получено из бинома (двучлена), именно поэтому обязано быть распределением двух случайных величин, о чём было известно В. Я. Буняковскому ещё 1846 году! Это же почти доказал и Лаплас в 1812 году [5], [6].

Новое — это хорошо забытое старое.

На самом деле биномиальное распределение получают в процессе разбиения множества различимых и неупорядоченных элементов на два подмножества случайных объёмов, в сумме составляющих исходное множество. Число подмножеств равно числу случайных величин распределения. Процесс разбиения множества осуществляют последовательно во времени методом выбора без возвращения .

Главным распространителем парадоксов биномиального и мультиномиального распределений является Википедия, которая нарушает заодно и свои правила ВП МАРГ: http://ru.wikipedia.org/wiki/Биномиальное распределение и http://ru.wikipedia.org/wiki/Мультиномиальное распределение (не представлен ни один авторитетный источник).

Известно, что если в мультиномиальном распределении (https://ru.wikipedia.org/wiki/Multinomial_distribinion)  сократить число случайных величин до двух (к=2) (см. в оригинале это выглядит так: When k = 2, the multinomial distribution is the binomial distribution), то получим биномиальное распределение https://en.wikipedia.org/wiki/Binomial_distribution.

Напрашивается вопрос:так сколько же на самом деле в биномиальном распределении случайных величин? Две или одна? По логике и по приведённым рассуждениям, естественно, напрашивается ответ, что две. Однако согласно   энциклопедии  Википедии биномиальное распределение содержит одну случайную величину. Это же явный парадокс. Именно с этим парадоксом я и борюсь с августа 2012 года!

На втором месте со значительным отставанием от Википедии следует Российская энциклопедия http://www.machinelearning.ru/wiki/index.php?title=Биномиальное распределение (представлен только один авторитетный источник и только для биномиального распределения, однако отдельной статьи по мультиномиальному распределению не имеет).

Пришло время, когда биномиальное распределение и мультиномиальное распределение описаны на единой методологической основе:

методом индукции от биномиального распределения приходим к мультиномиальному;

методом дедукции от мультиномиального распределения приходим к биномиальному.

Если и найдётся человек-чудак, который всерьёз будет утверждать, что << биномиальное распределение — это распределение одной случайной величины, полученное методом выбора с возвращением >>, поприветствуем его как человека из прошлого века.

ЛитератураПравить

  1. История математики, т. 2. Математика XV11 века. М.: Наука, 1970, 300 С.
  2. Буняковский В. Я. ОСНОВАНИЯ МАТЕМАТИЧЕСКОЙ ТЕОРИИ ВЕРОЯТНОСТЕЙ сочинение В. Я. БУНЯКОВСКОГО, ИМПЕРАТОРСКОЙ АКАДЕМИИ НАУК, ОРДИНАРНОГО АКАДЕМИКА, ПРОФЕССРА С. ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА, ДОКТОРА МАТЕМАТИЧЕСКИХ НАУК ПАРИЖСКОЙ АКАДЕМИИ. САНКТПЕТЕРБУРГ. В Типографии Императорской Академии Наук. 1846. 477 с.
  3. Биномиальное распределение. Математический энциклопедический словарь. / Гл. ред. Ю. В Прохоров; Ред. кол. С. И. Адян, Н. С. Бахвалов, В. И. Батюцков, А. П. Ершов, Л. Д. Кудрявцев, А. Л. Онищик, А. П. Юшкевич. - М.: Сов. энциклопедия, 1988. С.95.
  4. Большев Л. Н. Биномиальное распределение. Вероятность и математическая статистика: Энциклопедия / Гл. ред. Ю. В. Прохоров.- М.: Большая Российская энциклопедия, 1999. С. 49-50. ISBN 5-85270-265-X
  5. Laplace P. Essai philosophique sur les probabilités. Paris, 1812. (Опыт философии теории вероятностей). Пер. с фр. A.I.B., под ред. А. К. Власова, М.: Московский университет, 1908.
  6. Лаплас П. Опыт философии теории вероятностей. // Вероятность и математическая статистика: Энциклопедия. М.: Большая Российская энциклопедия, 1999. С. 834-863. ISBN 585270265X

См.такжеПравить

Викия-сеть

Случайная вики