Викия

Математика

Оператор Лапласа

1457статей на
этой вики
Добавить новую страницу
Обсуждение0 Share

Обнаружено использование расширения AdBlock.


Викия — это свободный ресурс, который существует и развивается за счёт рекламы. Для блокирующих рекламу пользователей мы предоставляем модифицированную версию сайта.

Викия не будет доступна для последующих модификаций. Если вы желаете продолжать работать со страницей, то, пожалуйста, отключите расширение для блокировки рекламы.

Опера́тор Лапла́са (Лапласиан) — дифференциальный оператор, действующий в линейном пространстве гладких функций и обозначаемый символом \Delta. Функции F\ он ставит в соответствие функцию \left({\partial^2 \over \partial x_1^2} + {\partial^2 \over \partial x_2^2} + \ldots  + {\partial^2 \over \partial x_n^2}\right)F.


В произвольных ортогональных криволинейных координатах q_1,\ q_2,\ q_3:

\Delta f (q_1,\ q_2,\ q_3) = \operatorname{div}\,\operatorname{grad}\,f(q_1,\ q_2,\ q_3) = \frac{1}{H_1H_2H_3}\left[ \frac{\partial}{\partial q_1}\left( \frac{H_2H_3}{H_1}\frac{\partial f}{\partial q_1} \right) + \frac{\partial}{\partial q_2}\left( \frac{H_1H_3}{H_2}\frac{\partial f}{\partial q_2} \right) +  \frac{\partial}{\partial q_3}\left( \frac{H_1H_2}{H_3}\frac{\partial f}{\partial q_3} \right)\right],
где H_i\ - коэффициенты Ламе.


В цилиндрических координатах:

 \Delta f 
= {1 \over r} {\partial \over \partial r}
  \left( r {\partial f \over \partial r} \right) 
+ {\partial^2f \over \partial z^2}
+ {1 \over r^2} {\partial^2f \over \partial \phi^2}


В сферических координатах:


 \Delta f 
= {1 \over r^2} {\partial \over \partial r}
  \left( r^2 {\partial f \over \partial r} \right) 
+ {1 \over r^2 \sin \theta} {\partial \over \partial \theta}
  \left( \sin \theta {\partial f \over \partial \theta} \right) 
+ {1 \over r^2 \sin^2 \theta} {\partial^2 f \over \partial \phi^2}


или


 \Delta f 
= {1 \over r} {\partial^2 \over \partial r^2}
  \left( rf \right) 
+ {1 \over r^2 \sin \theta} {\partial \over \partial \theta}
  \left( \sin \theta {\partial f \over \partial \theta} \right) 
+ {1 \over r^2 \sin^2 \theta} {\partial^2 f \over \partial \phi^2}.


Оператор Лапласа часто записывается следующим образом \nabla^2, то есть скалярное произведение оператора набла на себя.

ПрименениеПравить

Через данный оператор удобно записывать уравнения Лапласа, Пуассона и волновое уравнение, хотя наиболее простой вид последнее принимает с использованием оператора Даламбера (Даламбертиана).

См. такжеПравить


cs:Laplaceův operátornl:Laplace-operator

pl:Operator Laplace'ask:Laplaceov operátor sl:Laplaceov operator sr:Лапласов оператор sv:Laplaceoperatorn

Викия-сеть

Случайная вики