Викия

Математика

Неравенство Минковского

1457статей на
этой вики
Добавить новую страницу
Обсуждение0 Share

Обнаружено использование расширения AdBlock.


Викия — это свободный ресурс, который существует и развивается за счёт рекламы. Для блокирующих рекламу пользователей мы предоставляем модифицированную версию сайта.

Викия не будет доступна для последующих модификаций. Если вы желаете продолжать работать со страницей, то, пожалуйста, отключите расширение для блокировки рекламы.

Нера́венство Минко́вского - это неравенство треугольника для пространств функций с интегрируемой p-ой степенью.

ФормулировкаПравить

Пусть (X,\mathcal{F},\mu) - пространство с мерой, и функции f,g \in L^{p}(X,\mathcal{F},\mu), то есть \int_X |f|^p\, d\mu < \infty,\; \int_X |g|^p\, d\mu < \infty, где p \ge 1, и интеграл понимается в смысле Лебега. Тогда f+g \in L^p(X,\mathcal{F},\mu), и более того:

\left(\int\limits_X |f(x) + g(x)|^p\, \mu(dx) \right)^{1/p} \le \left( \int\limits_X |f(x)|^p\, \mu(dx)\right)^{1/p} + \left( \int\limits_X |g(x)|^p\, \mu(dx)\right)^{1/p}.

ЗамечаниеПравить

Неравенство Минковского показывает, что в линейном пространстве L^p(X,\mathcal{F},\mu) можно ввести норму:

\|f\|_p = \left(\;\int\limits_X |f(x)|^p\, \mu(dx)\; \right)^{1/p},

которая превращает его в нормированное, а следовательно и метрическое пространство.

Частные случаиПравить

Евклидово пространствоПравить

Рассмотрим Евклидово пространство E = \mathbb{R}^n или \mathbb{C}^n. L^p-норма в этом пространстве имеет вид:

\| x\|_p = \left( \sum\limits_{i=1}^n |x_i|^p \right)^{1/p},\; x = (x_1 ,\ldots, x_n)^{\top},

и тогда

\left( \sum\limits_{i=1}^n |x_i + y_i|^p \right)^{1/p} \le \left( \sum\limits_{i=1}^n |x_i|^p \right)^{1/p} + \left( \sum\limits_{i=1}^n |y_i|^p \right)^{1/p},\; \forall x,y \in E.

Если n = 2,3 и p = 2, то получаем классическое неравенство треугольника из планиметрии и стереометрии.

Пространство lpПравить

Пусть X = \mathbb{N},\, \mathcal{F} = 2^{\mathbb{N}},\, m - счётная мера на \mathbb{N}. Тогда множество всех последовательностей \{x_n\}_{n=1}^{\infty}, таких что

\|x\|_p = \sum_{i=1}^{\infty} |x_n|^p < \infty,

называется l^p. Неравенство Минковского для это пространства имеет вид:

\left( \sum\limits_{n=1}^{\infty} |x_n + y_n|^p \right)^{1/p} \le \left( \sum\limits_{n=1}^{\infty} |x_n|^p \right)^{1/p} + \left( \sum\limits_{n=1}^{\infty} |y_n|^p \right)^{1/p},\; \forall x,y \in l^p.

Вероятностное пространствоПравить

Пусть (\Omega,\mathcal{F},\mathbb{P}) - вероятностное пространство. Тогда L^p(\Omega,\mathcal{F},\mathbb{P}) состоит из случайных величин с конечным pмоментом: \mathbb{E}\left[|X|^p\right] < \infty, где символ \mathbb{E} обозначает математическое ожидание. Неравенство Минковского в этом случае имеет вид:

\left( \mathbb{E}|X+Y|^p \right)^{1/p}\le \left(\mathbb{E}|X|^p\right)^{1/p} + \left( \mathbb{E}|Y|^p \right)^{1/p}.

См. также Править


Эта статья содержит материал из статьи Неравенство Минковского русской Википедии.

Викия-сеть

Случайная вики