Wikia

Математика

Натуральное число

Обсуждение3
1427статей на этой вики

Натуральные числачисла, которые человек использует при счете предметов (например: 1, 2, 3, 4, 5 и т. д.).


Существуют два подхода к определению натуральных чисел — числа, используемые при :

  • перечислении (нумеровании) предметов (первый, второй, третий…) — подход общепринятый в большинстве стран мира (в том числе и в России).
  • обозначении количества предметов (нет предметов, один предмет, два предмета… ) общепринято в трудах Бурбаки, где натуральные числа определяются как мощности конечных множеств.

Отрицательные и нецелые числа — натуральными числами не являются.

Множество всех натуральных чисел принято обозначать знаком \mathbb{N}.

Существует бесконечное множество натуральных чисел — для любого натурального числа найдётся другое натуральное число, большее его..

См. также основную статью: Аксиомы Пеано

Введём функцию S, которая сопоставляет числу x следующее за ним число.

  1. 1\in\mathbb{N} (1 является натуральным числом);
  2. Если x\in\mathbb{N}, то S(x)\in\mathbb{N} (Число, следующее за натуральным, также является натуральным);
  3. \nexists x\in\mathbb{N}\ (S(x) = 1) (1 не следует ни за каким натуральным числом);
  4. Если S(b)=a и S(c)=a, тогда b=c (если натуральное число a непосредственно следует как за числом b, так и за числом c, то b=c);
  5. Аксиома индукции. Пусть P(n) — некоторый одноместный предикат, зависящий от параметра — натурального числа n. Тогда:
если P(1) и \forall n\;(P(n)\Rightarrow P(S(n))), то \forall n\;P(n)
(Если некоторое высказывание P верно для n=1 (база индукции) и для любого n при допущении, что верно P(n), верно и P(n+1) (индукционное предположение), то P(n) верно для любых натуральных n).

Замечание Править

Иногда, в иностранной и переводной литературе, в первой и третьей аксиомах заменяют 1 на 0. В этом случае ноль считается натуральным числом.

Теоретико-множественное определение Править

Согласно теории множеств, единственным объектом конструирования любых математических систем является множество.

Таким образом, и натуральные числа вводятся, исходя из понятия множества, по двум правилам:

  • 0=\varnothing
  • S(n)=n\cup\left\{n\right\}

Числа, заданные таким образом, называются ординальными.

Первые несколько ординальных чисел и соответствующие им натуральные числа:

  • 0=\varnothing
  • 1=\left\{\varnothing\right\}
  • 2=\big\{\varnothing,\;\left\{\varnothing\right\}\big\}
  • 3=\Big\{\varnothing,\;\left\{\varnothing\right\},\;\big\{\varnothing,\;\left\{\varnothing\right\}\big\}\Big\}

Операции над натуральными числами Править

К замкнутым операциям (операциям, не выводящим результат из множества натуральных чисел) над натуральными числами относятся следующие арифметические операции:

  • Сложение. Cлагаемое + Слагаемое = Сумма
  • Умножение. Множитель * Множитель = Произведение

Дополнительно рассматривают ещё две операции. С формальной точки зрения они не являются операциями над натуральными числами, так как не определены для всех пар чисел (иногда существуют, иногда нет).

  • Вычитание. Уменьшаемое - Вычитаемое = Разность. При этом Уменьшаемое должно быть больше Вычитаемого (или равно ему, если считать 0 натуральным числом).
  • Деление. Делимое / Делитель = (Частное, Остаток). Частное p и остаток r от деления a на b определяются так: a=p*b+r, причём 0\leqslant r<p. Заметим, что именно последнее условие запрещает деление на ноль, так как иначе a можно представить в виде a=p*0+a, т.е. можно было бы считать частным 0, а остатком = a.

Следует заметить, что именно операции сложения и умножения являются основополагающими. В частности, кольцо целых чисел определяется именно через бинарные операции сложения и умножения.

Основные свойства Править

  1. Коммутативность сложения. \,\! a + b = b + a
  2. Коммутативность умножения. \,\! ab = ba
  3. Ассоциативность сложения. \,\! (a + b) + c = a + (b + c)
  4. Ассоциативность умножения. \,\! (ab)c = a(bc)
  5. Дистрибутивность умножения относительно сложения. \,\! \begin{cases} a(b+c) = ab + ac \\ (b + c)a = ba + ca \end{cases}

Н Править

Ссылки Править



Эта статья содержит материал из статьи Натуральное число русской Википедии.

Викия-сеть

Случайная вики