Викия

Математика

Мультиномиальное распределение с упорядоченными элементами подмножеств

1457статей на
этой вики
Добавить новую страницу
Обсуждение0 Поделиться

Обнаружено использование расширения AdBlock.


Викия — это свободный ресурс, который существует и развивается за счёт рекламы. Для блокирующих рекламу пользователей мы предоставляем модифицированную версию сайта.

Викия не будет доступна для последующих модификаций. Если вы желаете продолжать работать со страницей, то, пожалуйста, отключите расширение для блокировки рекламы.

Определение Править

Мультиномиальное распределение с упорядоченными элементами подмножеств

\prod_{i=1}^k\frac{1}{n_i!}P(t_i,X_i=n_i \mid t_{i-1},X_{i-1}=n_{i-1})=\frac{n!}{n_1! \cdots n_k!} p_1^{n_1}\cdots p_k^{n_k}\prod_{j=0}^{j=k}\frac{1}{n_i!},

i=1,\ldots,k, \quad 2\le k \le n <\infty, \quad  j=0,1,\ldots,k,

определено на точечных пространствах элементарных событий


\Omega_1, \ldots, \Omega _k

и принимает в дискретные последовательные моменты времени


t_1, \ldots, t_k, \quad  t_i<t_{i+1}

целые неотрицательные значения


n_1, \ldots, n_k,

с соответствующими вероятностями успехов распределений Бернулли


p_1, \ldots, p_k,

взаимосвязанные условиями


\frac{n_1}{n_1!}+\ldots+\frac{n_k}{n_k!}=n, \quad \frac{p_1}{n_1!}+ \ldots +\frac{p_k}{n_k!}=1,

согласно которым


X_i=n_i \mid X_{i-1}=n_{i-1}

в  i - ый момент времени i - ая случайная величина X _i принимает значение n _i,  \quad  0\le n_i\le n-\ldots- n_{i-1} при условии, что в предшествующий момент времени n _{i-1}, \quad t_{i-1}<t_i предшествующая случайная величина X_{i-1} приняла значение n _{i-1}, \quad 0\le n_{i-1}\le n-\ldots-n_{i-2}. Причём каждая случайная величина зависима от всех предшествующих величин этого процесса. Исключение составляет только первая случайная величина этого распределения X_1. Она является независимой.

Особенности данного распределения Править

1. Мультиномиальное распределение с упорядоченными элементами подмножеств (левая часть таблицы 1) имеет место, когда его подмножества различимы только местоположением элементов в них. В общепринятом понимании мультиномиальное распределение — это мультиномиальное распределение с упорядоченными подмножествами, а именно, то распределение, в котором учитывается только порядок следования самих подмножеств, но не учитывается порядок следования элементов в каждом подмножестве.

Таблица 1 – Возможные комбинации трёх различимых и неразличимых элементов, их вероятности
Номер Различимые элементы Наразличимые элементы
Комбинации Вероятность различимой комбинации Неразличимая комбинация Вероятность неразличимой комбинации
1 a c e
2 a e c
3 c a e 0,01333... * * * 0,08
4 c e a
5 e a c
6 e c a

2. В данном распределении не выполняются технические задачи и технические результаты, принятые и описанные в [1] для общепринятого мультиномиального распределения с упорядоченными подмножествами.

3. Отсутствует однозначность между номером случайной величины мультиномиального распределения и её числовым значением.

4. Дисперсия данного мультиномиального распределения



D(X_1=n_1,\ldots, X_k=n_k)=\sum_{i=1}^k(n-\ldots-n_{i-1})p_iq_i

не зависит от различимости элементов его подмножеств и совпадает с дисперсией обычного мультиномиального распределения (с различимыми подмножествами).

Общий и частный случаи мультиномиального распределения с упорядоченными элементами подмножеств Править

Общий случай мультиномиального распределения с упорядоченными элементами подмножеств имеет место, когда одно и более подмножеств содержит хотя бы одну выборку объёмом не менее двух элементов.

Частный случай этого распределения имеет место, когда выборки различимы между собой и принимают нулевые и/или единичные значения, а число выборок не меньше числа случайных величин распределения.

Принцип получения вероятностей мультиномиального распределения с упорядоченными элементами подмножествПравить

В основу получения вероятностей этого распределения положен алгоритм Феллера, суть которого изложен на с.60 [2].

Произвольный исходный набор, например, 22111100 (таблица 2, 3-я строка сверху), разбивается на три группы, в каждой из которых выборки равных объёмов, а именно: 22, 1111 и 00 (2, 4 и 2). Такое разбиение может быть выполнено \frac{8!}{2!4!2!}=420 способами. Каждому из этих 420-ти различимых наборов соответствует вероятность \frac{8!}{2!2!}8^{-8}=0,000600. Общая вероятность 420-ти различимых наборов (из исходного набора 22111100) составит \frac{8!}{2!2!}8^{-8}\frac{8!}{2!4!2!}=0,252432222. Аналогично рассчитываются вероятности для всех других наборов таблицы 2. Жирным шрифтом в таблице 2 выделены максимумы, косым шрифтом - минимумы.

Принцип получения математического ожидания мультиномиального распределения с упорядоченными элементами подмножествПравить

Математическое ожидание как глобальный максимум вероятностей мультиномиального распределения с упорядоченными элементами подмножеств находится из тех же соображений, что и глобальный максимум любого мультиномиального распределения, а именно, чем меньше знаменатель мультиномиального коэффициента, тем больше вероятность. Отсюда в искомом наборе должны присутствовать выборки объёмами 0 и 1, а сам набор должен быть как можно большего размера с тем, чтобы разместить в нём как можно больше нулевых и единичных выборок.

В общем случае из-за наличия нулевых выборок это выполнить невозможно без добавления выборок большего объёма. Такими могут быть только выборки с объёмами по два элемента исходного множества. Следовательно, выборками объёмами 0, 1 и 2 элемента можно описать любой набор максимального размера, и глобальный максимум вероятностей различимых наборов необходимо искать в наборах, в которых имеются три группы выборок с объёмами 0, 1 и 2 элементов (см.таблицу 2, 3-ю строку сверху). Единственное исключение составляет случай биномиального распределения. Его набор можно заполнить только одними единицами: 11.

В первом приближении группы двоек, единиц и нулей принимаются равными. Максимальная длина набора делится на 3. При этом, если число делится на 3 с остатком, то остаток добавляется в группу единиц. Например, в таблице 2 число случайных величин (восемь) на три делится с остатком (\frac{n}{3}=\frac{8}{3}\approx2,667). Получается две группы по две двойки и по два нуля, а оставшаяся группа будет содержать четыре единицы: 22111100 , поскольку 1!=1. Соответственно глобальный максимум вероятностей будет  k_{n=8}=0,252 (таблица 2, 3-я строка сверху).

Значения восьми случайных величин Знаменатель вероятности Вероятность распределения Дисперсия распределения Экстремумы распределения
1 1 1 1 1 1 1 1 8!×1! 0,240×10-2 3,937 1-й локальный максимум
2 1 1 1 1 1 1 0 6!×2! 0,673×10-1 3,172 1-й локальный минимум
2 2 1 1 1 1 0 0 2!4!2!×2!2! 0,252 2,625 Математическое ожидание (второй локальный максимум)
2 2 2 1 1 0 0 0 3!2!3!×2!2!2! 0,168 2,297
2 2 2 2 0 0 0 0 4!4!×2!2!2!2! 0,150×10-3 2,187 2-й локальный минимум
3 1 1 1 1 1 0 0 5!2!×3! 0.400×10-3 2,516 3-й локальный максимум
3 2 1 1 1 0 0 0 2!4!×3!2!2! 0,200×10-3 2,078
3 2 2 1 0 0 0 0 2!5!×313121 0,100×10-3 1,859
3 3 2 1 0 0 0 0 4!3!×4! 0,334×10-4 1,641 3-й локальный минимум
4 1 1 1 1 0 0 0 2!4!×4!2! 0,100×10-3 1,969 4-й локальный максимум
4 2 1 1 0 0 0 0 2!5!×4!2!2! 0,500×10-4 1,641
4 2 2 0 0 0 0 0 5!×4!3! 0,250×10-4 1,531
4 2 2 0 0 0 0 0 5!×4!3! 0,250×10-4 1,531
4 3 1 0 0 0 0 0 6!×4!4! 0,167×10-5 1,422
4 4 0 0 0 0 0 0 2!4!×3!2!3! 0,417×10-5 1,312 4-й локальный минимум
5 1 1 1 0 0 0 0 3!4!×5! 0,200×10-4 1,531 5-й локальный максимум
5 2 1 0 0 0 0 0 5!×5!2! 0,100×10-4 1,312
5 3 0 0 0 0 0 0 6!×5!3! 0,334×10-5 1,203
6 1 1 0 0 0 0 0 2!5!×6! 10-5 1,203
6 2 0 0 0 0 0 0 6!×6!2! 0,167×10-5 1,094
7 1 0 0 0 0 0 0 6!×7! 0,477×10-6 0,984
8 0 0 0 0 0 0 0 7!×8! 0,596×10-7 0,875
Таблица 2 – Локальные экстремумы мультиномиального распределения с упорядоченными элементами подмножеств

ЛитератураПравить

  1. Голоборщенко В. С. Основы теории дискретных распределений. Часть 5: Как технические задачи и технические результаты математической физики. // Проблемы создания информационных технологий. М.: ООО Техполиграфцентр, 2010. Вып. 19, с. 31–36.
  2. Феллер В. Введение в теорию вероятностей и ее приложения, т. 1. М.: Мир, 1984. 527 с.

См. такжеПравить

Викия-сеть

Случайная вики