Математика
Регистрация
Advertisement

Шаблон:Значения Мно́жество — одно из ключевых понятий математики, в частности, теории множеств и логики.

Понятие множества обычно принимается за одно из исходных (аксиоматических) понятий, то есть несводимое к другим понятиям, а значит, и не имеющее определения; для его объяснения используются описательные формулировки, характеризующие множество как совокупность различных элементов, мыслимую как единое целое[1][2]. Также возможно косвенное определение через аксиомы теории множеств. Множество может быть пустым и непустым, упорядоченным и неупорядоченным, конечным и бесконечным, бесконечное множество может быть счётным или несчётным. Более того, как в наивной, так и в аксиоматической теориях множеств любой объект обычно считается множеством.

История понятия[]

См. также основную статью: История теории множеств

Основы теории конечных и бесконечных множеств были заложены Бернардом Больцано, который сформулировал некоторые из её принципов.

С 1872 года по 1897 год (главным образом в 1872—1884 годы) Георг Кантор опубликовал ряд работ, в которых были систематически изложены основные разделы теории множеств, включая теорию точечных множеств и теорию трансфинитных чисел (кардинальных и порядковых). В этих работах он не только ввёл основные понятия теории множеств, но и обогатил математику рассуждениями нового типа, которые применил для доказательства теорем теории множеств, в частности впервые к бесконечным множествам. Поэтому общепризнано, что теорию множеств создал Георг Кантор. В частности определил множество как «единое имя для совокупности всех объектов, обладающих данным свойством». Эти объекты назвал элементами множества. Множество объектов, обладающих свойством , обозначил . Если некоторое множество , то назвал характеристическим свойством множества .

Эта концепция привела к парадоксам, в частности, к парадоксу Рассела.

Так как теория множеств фактически используется как основание и язык всех современных математических теорий в 1908 году теория множеств была аксиоматизирована независимо Бертраном Расселом и Эрнстом Цермело. В дальнейшем многие исследователи пересматривали и изменяли обе системы, в основном сохранив их характер. До сих пор они всё ещё известны как теория типов Рассела и теория множеств Цермело. Впоследствии теорию множеств Кантора стало принято называть наивной теорией множеств, а вновь построенную — аксиоматической теорией множеств.

В практике, сложившейся с середины XX века множество определяется как модель, удовлетворяющая аксиомам ZFC (аксиомы Цермело — Френкеля с аксиомой выбора). При таком подходе в некоторых математических теориях возникают совокупности объектов, которые не являются множествами. Такие совокупности называются классами (различных порядков).

Элемент множества[]

Объекты, из которых состоит множество, называют элементами множества или точками множества. Множества чаще всего обозначают заглавными буквами латинского алфавита, его элементы — строчными. Если  — элемент множества , то записывают принадлежит »). Если не является элементом множества , то записывают не принадлежит »). В отличие от мультимножества каждый элемент множества уникален, и во множестве не может быть двух идентичных элементов. Иначе говоря, добавление к множеству элементов, идентичных уже принадлежащим множеству, не меняет его:

.

Некоторые виды множеств и сходных объектов[]

Специальные множества[]

Сходные объекты[]

  • Кортеж (в частности, упорядоченная пара) — упорядоченная совокупность конечного числа именованных объектов. Записывается внутри круглых или угловых скобок, а элементы могут повторяться.
  • Мультимножество (в теории сетей Петри называется «комплект») — множество с кратными элементами.
  • Пространство — множество с некоторой дополнительной структурой.
  • Вектор — элемент линейного пространства, содержащий конечное число элементов некоторого поля в качестве координат. Порядок имеет значение, элементы могут повторяться.
  • Последовательность — функция одного натурального переменного. Представляется как бесконечный набор элементов (не обязательно различных), порядок которых имеет значение.
  • Нечёткое множество — математический объект, подобный множеству, принадлежность которому задаётся не отношением, а функцией. Иными словами, относительно элементов нечёткого множества можно говорить «в какой мере» они в него входят, а не просто, входят они в него или нет.

По иерархии[]

  • Множество множеств (в частности, булеан — множество всех подмножеств данного множества).
  • Подмножество
  • Надмножество

Отношения между множествами[]

Файл:Venn A subset B.svg

Диаграмма Венна для

См. также основную статью: Подмножество

Два множества и могут вступать друг с другом в различные отношения.

  • включено в , если каждый элемент множества принадлежит также и множеству :
  • включает , если включено в :
  • равно , если и включены друг в друга:
  • строго включено в , если включено в , но не равно ему:
  • строго включает , если строго включено в :
  • и не пересекаются, если у них нет общих элементов:
    и не пересекаются
  • и находятся в общем положении, если существует элемент, принадлежащий исключительно множеству , элемент, принадлежащий исключительно множеству , а также элемент, принадлежащий обоим множествам:
    и находятся в общем положении

Операции над множествами[]

Файл:Venn0001.svg

Диаграмма Венна для

Файл:Venn0111.svg

Диаграмма Венна для

Файл:Venn0100.svg

Диаграмма Венна для

Файл:Venn0110.svg

Диаграмма Венна для

Бинарные операции[]

Основные бинарные операции, определяемые над множествами:

  • пересечение:
    .
  • объединение:
    .
Если множества и не пересекаются, то . Их объединение обозначают также: .
  • разность:
    .
  • симметрическая разность:
    .
  • декартово или прямое произведение:
    .

Для объяснения смысла операций часто используются диаграммы Венна, на которых представлены результаты операций над геометрическими фигурами как множествами точек.

Всякая система множеств, замкнутая относительно операций объединения и пересечения, образует относительно объединения и пересечения дистрибутивную решётку.

Унарные операции[]

Файл:Venn1110.svg

Диаграмма Венна для

Дополнение определяется следующим образом:

.

Операция дополнения подразумевает некоторый зафиксированный универсум (универсальное множество , которое содержит ), и сводится к разности множеств с этим универсумом:

.

Система множеств с фиксированным универсумом, замкнутая относительно операций объединения, пересечения с введённым таким образом дополнением образует булеву алгебру.

Булеан — множество всех подмножеств:

.

Обозначение происходит из свойства мощности множества всех подмножеств конечного множества:

.

Булеан порождает систему множеств с фиксированным универсумом , замкнутую относительно операций объединения и пересечения, то есть, образует булеву алгебру.

Приоритет операций[]

Сначала выполняются унарные операции (дополнение), затем — пересечения, затем — объединения и разности, которые имеют одинаковый приоритет. Последовательность выполнения операций может быть изменена скобками.

Мощность[]

См. также основную статью: Мощность множества

Мощность множества — характеристика множества, обобщающая понятие о количестве элементов для конечного множества таким образом, чтобы множества, между которыми возможно установление биекции были равномощны. Обозначается или . Мощность пустого множества равна нулю, для конечных множеств мощность совпадает с числом элементов, для бесконечных множеств вводятся специальные кардинальные числа, соотносящиеся друг с другом по принципу включения (если , то ) и распространением свойства мощности булеана конечного множества: на случай бесконечных множеств (само обозначение мотивировано этим свойством).

Наименьшая бесконечная мощность обозначается , это мощность счётного множества. Мощность континуума, биективного булеану счётного множества обозначается или . Континуум-гипотеза — предположение о том, что между счётной мощностью и мощностью континуума нет промежуточных мощностей.

Примечания[]

Шаблон:Примечания

Литература[]

  • К. Куратовский, А. Мостовский Теория множеств. — М.: Мир, 1970. — 416 с.
  • Столл Р. Р. Множества. Логика. Аксиоматические теории.. — М.: Просвещение, 1968. — 232 с.

Шаблон:Rq Шаблон:Логика

  1. Кантор:Шаблон:Начало цитаты Под «множеством» мы понимаем соединение в некое целое M определённых хорошо различимых предметов m нашего созерцания или нашего мышления (которые будут называться «элементами» множества M). Шаблон:Oq Шаблон:Конец цитаты
  2. Рассел: «Множество есть совокупность различных элементов, мыслимая как единое целое».
Advertisement