Викия

Математика

Многомерное нормальное распределение

1457статей на
этой вики
Добавить новую страницу
Обсуждение0 Share

Обнаружено использование расширения AdBlock.


Викия — это свободный ресурс, который существует и развивается за счёт рекламы. Для блокирующих рекламу пользователей мы предоставляем модифицированную версию сайта.

Викия не будет доступна для последующих модификаций. Если вы желаете продолжать работать со страницей, то, пожалуйста, отключите расширение для блокировки рекламы.

Многоме́рное норма́льное распределе́ние (или многоме́рное га́уссовское распределе́ние) в теории вероятностей - это обобщение одномерного нормального распределения.

ОпределенияПравить

Случайный вектор \mathbf{X} = (X_1,\ldots, X_n)^{\top}: \Omega \to \mathbb{R}^n имеет многомерное нормальное распределение, если выполняется одно из следующих эквивалентных условий:

\mathbf{X} = \mathbf{A} \mathbf{Z} + \mathbf{\mu}.
f_{\mathbf{X}}(\mathbf{x}) = \frac{1}{(2\pi )^{n/2} \vert \Sigma \vert^{1/2}} e^{-\frac{1}{2}(\mathbf{x} - \mathbf{\mu})^{\top} \Sigma^{-1} (\mathbf{x} - \mathbf{\mu})},\; \mathbf{x} \in \mathbb{R}^n,

где \vert \Sigma\vert - определитель матрицы \Sigma, а \Sigma^{-1} - матрица обратная к \Sigma.

  • Существует вектор \mathbf{\mu} \in \mathbb{R}^n и неотрицательно определённая симметричная матрица \mathbf{\Sigma} размерности n \times n, такие что характеристическая функция вектора \mathbf{X} имеет вид:
\phi_{\mathbf{X}}(\mathbf{u}) = e^{i \mathbf{\mu}^{\top} \mathbf{u} - \frac{1}{2}\mathbf{u}^{\top} \Sigma \mathbf{u}},\; \mathbf{u} \in \mathbb{R}^n.

ЗамечанияПравить

  • Если одно из приведённых выше определений принято в качестве основного, то другие выводятся в качестве теорем.
  • Вектор \mathbf{\mu} является вектором средних значений \mathbf{X}, а \Sigma - его ковариационная матрица.
  • В случае n = 1, многомерное нормальное распределение сводится к обычному нормальному распределению.
  • Если случайный вектор \mathbf{X} имеет многомерное нормальное распределение, то пишут \mathbf{X} \sim \mathrm{N}(\mathbf{\mu},\Sigma).

Свойства многомерного нормального распределенияПравить

  • Если вектор \mathbf{X} = (X_1,\ldots, X_n)^{\top} имеет многомерное нормальное распределение, то его компоненты X_i, i=1,\ldots, n, имеют одномерное нормальное распределение. Обратное, вообще говоря, неверно!
  • Если случайные величины X_1,\ldots,X_n имеют одномерное нормальное распределение и совместно независимы, то случайный вектор \mathbf{X} = (X_1,\ldots, X_n)^{\top} имеет многомерное нормальное распределение. Матрица ковариаций \Sigma такого вектора диагональна.
  • Если \mathbf{X} = (X_1,\ldots, X_n)^{\top} имеет многомерное нормальное распределение, и его компоненты попарно некоррелированы, то они независимы. Однако, если только компоненты X_i,\; i = 1 , \ldots, n имеют одномерное нормальное распределение и попарно не коррелируют, то отсюда не следует, что они независимы.
Контрпример. Пусть X \sim \mathrm{N}(0,1), а \alpha = \pm 1 с равными вероятностями. Тогда Y = \alpha X \sim \mathrm{N}(0,1), и корреляция X и Y равна нулю. Однако, эти случайные величины зависимы.
\mathbf{A}\mathbf{X} \sim \mathrm{N}\left(\mathbf{A}\mathbf{\mu},\mathbf{A}\Sigma \mathbf{A}^{\top}\right).
Вероятностные распределения
Одномерные Многомерные
Дискретные: Бернулли | биномиальное | геометрическое | гипергеометрическое | логарифмическое | отрицательное биномиальное | Пуассона | равномерное мультиномиальное
Абсолютно непрерывные: Бета | Вейбулла | Гамма | Колмогорова | Коши | логнормальное | Лоренца | нормальное (Гаусса) | равномерное | Парето | Стьюдента | Фишера | хи-квадрат | экспоненциальное | Эрланга многомерное нормальное
править
nl:Multivariate normale verdeling

pl:Wielowymiarowy rozkład normalny sv:Multivariat normalfördelning

Викия-сеть

Случайная вики