Викия

Математика

Математическая логика

1457статей на
этой вики
Добавить новую страницу
Обсуждение0 Поделиться

Обнаружено использование расширения AdBlock.


Викия — это свободный ресурс, который существует и развивается за счёт рекламы. Для блокирующих рекламу пользователей мы предоставляем модифицированную версию сайта.

Викия не будет доступна для последующих модификаций. Если вы желаете продолжать работать со страницей, то, пожалуйста, отключите расширение для блокировки рекламы.

Математическая логика — раздел математики, изучающий доказательства. Согласно определению П. С. Порецкого, «математическая логика есть логика по предмету, математика по методу».

Применение в логике математических методов становится возможным тогда, когда суждения формулируются на некотором точном языке. Такие точные языки имеют две стороны: синтаксис и семантику. Синтаксисом называется совокупность правил построения объектов языка (обычно называемых формулами). Семантикой называется совокупность соглашений, описывающих наше понимание формул (или некоторых из них) и позволяющих считать одни формулы верными, а другие — нет.

Важную роль в математической логике играет понятие исчисления. Исчислением называется совокупность правил вывода, позволяющих считать некоторые формулы выводимыми. Правила вывода подразделяются на два класса. Одни из них непосредственно квалифицируют некоторые формулы как выводимые. Такие правила вывода принято называть аксиомами. Другие же позволяют считать выводимыми формулы A, синтаксически связанные некоторым заранее определённым способом с конечными наборами A_1, \ldots A_n выводимых формул. Широко применяемым правилом второго типа является правило modus ponens: если выводимы формулы A и (A\to B), то выводима и формула B.

Отношение исчислений к семантике выражается понятиями семантической пригодности и семантической полноты исчисления. Исчисление И называется семантически пригодным для языка Я, если любая выводимая в И формула языка Я является верной. Аналогично, исчисление И называется семантически полным в языке Я, если любая верная формула языка Я выводима в И.

Многие из рассматриваемых в математической логике языков обладают семантически полными и семантически пригодными исчислениями. В частности, известен результат К. Гёделя о том, что так называемое классическое исчисление предикатов является семантически полным и семантически пригодным для языка классической логики предикатов первого порядка. С другой стороны, имеется немало языков, для которых построение семантически полного и семантически пригодного исчисления невозможно. В этой области классическим результатом является теорема Гёделя о неполноте, утверждающая невозможность семантически полного и семантически пригодного исчисления для языка формальной арифметики.

Литература Править

  • А. А. Марков. Элементы математической логики. — М.: Изд-во МГУ, 1984.
  • Дж. Шенфилд. Математическая логика. — М.: Наука, 1975.

Ссылки Править


ar:منطق رياضي

be:Матэматычная логіка be-x-old:Матэматычная логіка bg:Математическа логика bs:Matematička logika cs:Matematická logikael:Μαθηματική λογικήeo:Matematika logikoet:Matemaatiline loogika fa:منطق ریاضیgd:Rianas matamataigeach he:לוגיקה מתמטית hr:Matematička logika hu:Matematikai logikaka:მათემატიკური ლოგიკა lij:Logica Matematica mk:Математичка логика no:Predikatslogikk pl:Logika matematyczna sk:Matematická logika sl:Matematična logika sq:Logjika matematikore sv:Matematisk logik th:คณิตตรรกศาสตร์ tl:Matematikal na lohikauk:Математична логіка

Викия-сеть

Случайная вики