Математика
Advertisement

Аксио́ма вы́бора утверждает: «Для каждого семейства непустых непересекающихся множеств существует множество , имеющее один и только один общий элемент с каждым из множеств , принадлежащих ».

Аксиома выбора принимается не всеми математиками безоговорочно: некоторые относятся к ней с недоверием. Бытует мнение, что доказательства, полученные с привлечением этой аксиомы, имеют иную познавательную ценность, чем доказательства, независимые от неё. Основано оно, прежде всего, на том, что утверждается лишь существование множества , но не дается никакого способа его определения – отсюда неэффективность в случае бесконечных множеств. Это мнение, например, Бореля и Лебега. Противоположного мнения придерживались, например, Хаусдорф и Френкель, которые принимали аксиому выбора без всяких оговорок, признавая за ней ту же степень «очевидности», что и за другими аксиомами теории множеств: аксиома объемности, аксиома существования пустого множества, аксиома пары, аксиома суммы, аксиома степени, аксиома бесконечности. Более того, среди следствий аксиомы выбора есть много довольно специфичных: например, появляется возможность доказать парадокс Банаха—Тарского, который вряд ли можно считать «очевидным». Подробный анализ многочисленных доказательств, использующих аксиому выбора, провел Серпинский. Однако, без сомнения, многие важные математические открытия нельзя было бы сделать без аксиомы выбора.


Альтернативные формулировки[]

Аксиома выбора утверждает:

Пусть X — множество непустых множеств. Тогда мы можем выбрать единственный элемент из каждого множества в X.

Функция выбора — функция на множестве множеств X такая, что для каждого множества s в X, f(s) является элементом из s. С использованием понятия функции выбора аксиома утверждает:

Для любого семейства непустых множеств X существует функция выбора f, определенная на X.

Или альтернативно:

Произвольное декартово произведение непустых множеств непусто.

Или наиболее сжато:

Каждое множество непустых множеств имеет функцию выбора.

Отсюда немедленно следует компактная формулировка отрицания аксиомы выбора:

Существует множество непустых множеств, которое не имеет никакой функции выбора.

Вторая версия аксиомы выбора утверждает:

Для данного произвольного множества попарно непересекающихся непустых множеств существует, по крайней мере, одно множество, которое содержит точно один элемент, общий с каждым из непустых множеств.

Некоторые авторы используют другую версию, которая эффективно утверждает:

Для любого множества A, степенное множество (минус пустое подмножество) имеет функцию выбора.

Авторы, которые используют эту формулировку, часто также говорят о «функции выбора на A», но оговаривают, что имеют ввиду немного другое понятие функции выбора. Её область определения — степенное множество (минус пустое подмножество), тогда как в других местах этой статьи, область определения функции выбора — «множество множеств». С этим дополнительным понятием функции выбора, аксиома выбора может быть сжато сформулирована так:

Каждое множество имеет функцию выбора.

Применение[]

До конца 19-го века аксиома выбора использовалась безоговорочно. Например, после определения множества X содержащего непустое множество, математик мог сказать: "Пусть F(s) будет определено для каждого s из X". В общем, невозможно доказать, что F существует без аксиомы выбора, но это, кажется, оставалось без внимания до Цермело.

Не во всех случаях требуется аксиома выбора. Для конечного набора X, аксиома выбора следует из других аксиом теории множеств. В этом случае это то же самое, что говорить, если мы имеем несколько (конечное число) коробок, каждая из которых содержит в себе по одной одинаковой вещи, тогда мы можем выбрать ровно одну вещь из каждой коробки. Ясно, что мы можем сделать это: мы начнём с первой коробки, выберем вещь; отправимся ко второй коробке, выберем вещь; и т. д. Так как есть конечное число коробок, то действуя нашей процедурой выбора, мы придём к концу. Результатом будет функция явного выбора: функция, которая первой коробке сопоставляет первый элемент, который мы выбрали, второй коробке — второй элемент и т.д. (Для получения формального доказательства для всех конечных множеств следует воспользоваться принципом математической индукции).

В случае с бесконечным множеством X иногда также можно обойти аксиому выбора. Например, если элементы X — множества натуральных чисел. Каждый непустой набор натуральных чисел имеет наименьший элемент, таким образом, определяя нашу функцию выбора, мы можем просто сказать, что каждому множеству сопоставляется наименьший элемент набора. Это даёт нам сделать выбор элемента из каждого множества, поэтому мы можем записать явное выражение, которое говорит нам, какое значение наша функция выбора принимает. Если возможно таким образом определить функцию выбора, в аксиоме выбора нет необходимости.

Сложности появляются в случае, если невозможно осуществить естественный выбор элементов из каждого множества. Если мы не можем сделать явный выбор, то почему уверены, что такой выбор можно совершить в принципе? Например, пусть X — это множество непустых подмножеств действительных чисел. Во-первых, мы могли бы поступить как в случае, если бы X было конечным. Если мы попробуем выбрать элемент из каждого множества, тогда, так как X бесконечно, наша процедура выбора никогда не придёт к концу, и вследствие этого мы никогда не получим функции выбора для всего X. Так что это не срабатывает. Далее, мы можем попробовать определить наименьший элемент из каждого множества. Но некоторые подмножества действительных чисел не содержат наименьший элемент. Например, таким подмножеством является открытый интервал (0, 1). Если x принадлежит (0, 1), то x/2 также принадлежит ему, причем меньше, чем x. Итак, выбор наименьшего элемента тоже не работает.

Причина, которая позволяет выбрать нам наименьший элемент из подмножества натуральных чисел — это факт, что натуральные числа обладают свойством вполнеупрорядоченности. Каждое подмножество натуральных чисел имеет единственный наименьший элемент в силу естественной упорядоченности. Возможно, если бы мы были умнее, то могли бы сказать: «Возможно, если обычный порядок для действительных чисел не позволяет найти особое (наименьшее) число в каждом подмножестве, мы могли бы ввести другой порядок, который таки давал бы свойство вполнеупорядоченности. Тогда наша функция сможет выбрать наименьший элемент из каждого множества в силу нашего необычного упорядочивания». Проблема тогда возникает в этом построении вполнеупорядоченности, которая для своего решения требует наличия аксиомы выбора. Иными словами, каждое множество может быть вполне упорядочено тогда и только тогда, когда аксиома выбора справедлива.

Доказательства, требующие аксиомы выбора, всегда неконструктивны: даже если доказательство создаёт объект, невозможно сказать, что же именно это за объект. Следовательно, хоть аксиома выбора позволяет вполнеупорядочить множество действительных чисел, это не даёт нам никакой наглядности и конструктивизма в целом. Сама причина, по которой наш вышеуказанный выбор вполне упорядочения действительных чисел был таким для каждого множества X, мы могли явно выбрать элемент из такого множества. Если мы не можем указать, что мы используем вполне упорядоченность, тогда наш выбор не вполне явный. Это одна из причин, почему некоторые математики не любят аксиому выбора. Например, конструктивистская установка что все существующие доказательства должны быть полностью явными; должно быть возможным построение чего бы то ни было что существует. Они отвергают аксиому выбора потому что она заявляет существование объекта без описания, что это такое. С другой стороны, ничтожный факт что для доказательства существования используется аксиома выбора не означает, что мы не сможем совершить построение другим способом.

Принцип вполне упорядочивания (теорема Цермело)[]

Очень распространённая и удобная формулировка использует понятие вполне упорядоченного множества. Нам потребуется несколько определений, и мы начнём со строгого определения линейного порядка, выражающего знакомую нам идею на языке теории множеств. Напомним, что упорядоченная пара элементов обозначается и что декартово произведение множеств состоит из всех возможных упорядоченных пар где .

Линейным порядком на множестве называется подмножество декартова произведения , обладающее следующим свойствами:# Полное: # Антисимметричное:

  1. Транзитивное:

Полным порядком на множестве называется такой линейный порядок, что каждое подмножество имеет наименьший элемент.

Принцип полного порядка заключается в том, что любое множество может быть вполне упорядочено.

Например, С тем же отношением, множество целых чисел не имеет наименьшего элемента. В этом случае мы можем собрать целые числа в последовательность (0, −1, 1, −2, 2, … , −n, n, …) и сказать, что младшие члены меньше чем старшие. Очевидно, такое отношение будет полным порядком на целых числах.

Гораздо менее очевидно, что действительные числа, формирующие несчётное множество, могут быть вполне упорядочены.

Утверждение, что множество натуральных чисел может быть вполне упорядоченно обычным отношением «меньше или равно чем» вносит в этом случае свою достойную лепту, так как достаточно очевидным будет предположение, что в "первичном множестве натуральных чисел" не может быть двух одинаковых, значит отношение "меньше или равно чем" может быть заменено отношением "меньше чем".


Лемма Цорна[]

Если в частично упорядоченном множестве любая цепь (то есть линейно упорядоченное подмножество) имеет верхнюю грань, то всё множество имеет хотя бы один максимальный элемент.

Более формально:

Пусть частично упорядоченное множество, то есть, отношение рефлексивно, антисимметрично и транзитивно:* *

Подмножество называется линейно упорядоченным, если . Элемент называется верхней гранью, если . Допустим, что любое линейно упорядоченное подмножество множества имеет верхнюю грань. Тогда максимальный элемент.

Принцип максимума Хаусдорфа[]

См. также[]

Литература[]

  • Александров П. С. «Введение в теорию множеств и общую топологию» (глава 3, § 4).


ca:Axioma d'elecció cs:Axiom výběru da:Udvalgsaksiomet he:אקסיומת הבחירה hu:Kiválasztási axióma nl:Keuzeaxioma pl:Aksjomat wyboru sv:Urvalsaxiomet

Advertisement