Викия

Математика

Корень многочлена

1457статей на
этой вики
Добавить новую страницу
Обсуждение0 Поделиться

Обнаружено использование расширения AdBlock.


Викия — это свободный ресурс, который существует и развивается за счёт рекламы. Для блокирующих рекламу пользователей мы предоставляем модифицированную версию сайта.

Викия не будет доступна для последующих модификаций. Если вы желаете продолжать работать со страницей, то, пожалуйста, отключите расширение для блокировки рекламы.

Корень многочлена

a_0+a_1x+\dots+a_nx^n

над полем k — элемент c\in k, который после подстановки его вместо x обращает уравнение

a_0+a_1x+\dots+a_nx^n=0

в тождество.

Свойства Править

  • Если c является корнем многочлена p(x), то p(x) делится без остатка на x-c (теорема Безу).
  • Число вещественных корней многочлена с вещественными коэффициентами степени n заведомо меньше либо равно n. При этом комплексные корни многочлена (если они есть) сопряжены, таким образом, многочлен четной степени может иметь только четное число вещественных корней, а многочлен нечётной — только нечётное.
  • Всякий многочлен p(x) с вещественными или комплексными коэффициентами имеет, по крайней мере, один, вообще говоря, комплексный корень (основная теорема алгебры).
p(x) = a_n(x-c_1)(x-c_2)\dots(x-c_n),
где c_1,c_2,\dots,c_n — (в общем случае комплексные) корни многочлена p(x), возможно с повторениями, при этом если среди корней c_1,c_2,\dots,c_n многочлена p(x) встречаются равные, то общее их значение называется кратным корнем.

Нахождение корней Править

Способ нахождения корней линейных и квадратичных многочленов, то есть способ решения линейных и квадратных уравнений, был известен ещё в древнем мире. Поиски формулы для точного решения общего уравнения третьей степени продолжались долгое время (следует упомянуть метод, предложенный Омаром Хайямом), пока не увенчались успехом в первой половине XVI века в трудах Сципиона дель Ферро, Никколо Тарталья и Джероламо Кардано. Формулы для корней квадратных и кубических уравнений позволили сравнительно легко получить формулы для корней уравнения четвертой степени.

То, что корни общего уравнения пятой степени и выше не выражаются при помощи рациональных функций и радикалов от коэффициентов было доказано норвежским математиком Нильсом Абелем в 1826 г. Это совсем не означает, что корни такого уравнения не могут быть найдены. Во-первых, в частных случаях, при некоторых комбинациях коэффициентов корни уравнения при некоторой изобретательности могут быть определены. Во-вторых, существуют формулы для корней уравнений 5-й степени и выше, использующие, однако, специальные функции — эллиптические или гипергеометрические (см., к примеру, корень Бринга).

В случае, если все коэффициенты многочлена рациональны, то нахождение его корней приводится к нахождению корней многочлена с целыми коэффициентами. Для рациональных корней таких многочленов существуют алгоритмы нахождения перебором кандидатов с использованием схемы Горнера, причем при нахождении целых корней перебор может быть существенно уменьшен приемом чистки корней. Также в этом случае можно использовать полиномиальный LLL-алгоритм.

Для приблизительного нахождения (с любой требуемой точностью) вещественных корней многочлена с вещественными коэффициентами используются итерационные методы, например, метод секущих, метод бисекции, метод Ньютона. Количество вещественных корней многочлена на интервале может быть оценено при помощи теоремы Штурма.he:שורש (מתמטיקה) io:Radiko (matematiko)nl:Wortel (wiskunde) pl:Pierwiastek arytmetycznyvi:Nghiệm số

Викия-сеть

Случайная вики