Викия

Математика

Компактное пространство

1457статей на
этой вики
Добавить новую страницу
Обсуждение0 Share

Обнаружено использование расширения AdBlock.


Викия — это свободный ресурс, который существует и развивается за счёт рекламы. Для блокирующих рекламу пользователей мы предоставляем модифицированную версию сайта.

Викия не будет доступна для последующих модификаций. Если вы желаете продолжать работать со страницей, то, пожалуйста, отключите расширение для блокировки рекламы.

Компактное пространство — это такое топологическое пространство, в любом покрытии которого открытыми множествами найдётся конечное подпокрытие.

В топологии, компактные пространства по своим свойствам напоминают конечные множества в теории множеств.

Связанные определения Править

  • Подмножество топологического пространства, являющееся в индуцированной топологии компактным пространством, называется компактным множеством или компактом.
  • Множество называется относительно компактным или предкомпактным, если его замыкание компактно.
  • Пространство называется секвенциально компактным, если из любой последовательности в нём можно выделить сходящуюся подпоследовательность.
  • Локально компактное пространство — топологическое пространство, в котором любая точка имеет компактную окрестность.

Свойства Править

Анекдот

Математик говорит девушке:
— Вы такая компактная…
Девушка наивно уточняет:
— В смысле, стройная и миниатюрная?
— Нет. Замкнутая и ограниченная!

Примеры компактных множеств Править

  • замкнутые и ограниченные множества в \mathbb{R}^n
  • конечные подмножества в пространствах, удовлетворяющих аксиоме отделимости T1
  • теорема Асколи-Арцела даёт характеризацию компактных множеств для некоторых функциональных пространств. Рассмотрим пространство C(X) вещественных функций на метрическом компактном пространстве X с нормой \|f\|=\sup_x |f(x)|. Тогда замыкание множества функций F в C(X) компактно тогда и только тогда, когда F равномерно ограничено и равностепенно непрерывно.
  • пространство Стоуна булевых алгебр
  • компактификация топологического пространства

История Править

Бикомпактное пространство — термин, введённый П. С. Александровым как усиление введённого М. Фреше понятия компактного пространства: топологическое пространство компактно — в первоначальном смысле слова — если в каждом счётном открытом покрытии этого пространства содержится его конечное подпокрытие. Однако дальнейшее развитие математики показало, что понятие бикомпактности настолько важнее первоначального понятия компактности, что в настоящее время под компактностью понимают именно бикомпактность, а компактные в старом смысле пространства называют счётно-компактными. Оба понятия равносильны в применении к метрическим пространствам.

Литература Править


Эта статья содержит материал из статьи Компактное пространство русской Википедии.

Викия-сеть

Случайная вики