Викия

Математика

Ковариационная матрица

1457статей на
этой вики
Добавить новую страницу
Обсуждение0 Share

Обнаружено использование расширения AdBlock.


Викия — это свободный ресурс, который существует и развивается за счёт рекламы. Для блокирующих рекламу пользователей мы предоставляем модифицированную версию сайта.

Викия не будет доступна для последующих модификаций. Если вы желаете продолжать работать со страницей, то, пожалуйста, отключите расширение для блокировки рекламы.

Ковариацио́нная ма́трица (или ма́трица ковариа́ций) в теории вероятностей - это матрица, составленная из попарных ковариаций элементов двух случайных векторов.

ОпределенияПравить

  • Пусть \mathbf{X}:\Omega \to \mathbb{R}^n\;,\mathbf{Y}:\Omega \to \mathbb{R}^m - два случайных вектора размерности n и m соответственно. Пусть также случайные величины X_i,Y_j,\; i=1,\ldots, n,\; j = 1,\ldots, m имеют конечный второй момент, то есть X_i,Y_j \in L^2. Тогда матрицей ковариации векторов \mathbf{X},\mathbf{Y} называется
\Sigma = \mathrm{cov}(\mathbf{X},\mathbf{Y}) = \mathbb{E}\left[(\mathbf{X} - \mathbb{E}\mathbf{X})(\mathbf{Y} - \mathbb{E}\mathbf{Y})^{\top}\right],

то есть

\Sigma = (\sigma_{ij}),

где

\sigma_{ij} = \mathrm{cov}(X_i,Y_j) \equiv \mathbb{E}\left[(X_i - \mathbb{E}X_i) (Y_j - \mathbb{E}Y_j)\right],\; i=1,\ldots, n,\; j = 1,\ldots, m.
  • Если \mathbf{X} \equiv \mathbf{Y}, то \Sigma называется матрицей ковариации вектора \mathbf{X} и обозначается \mathrm{cov}(\mathbf{X}).

Свойства матриц ковариацииПравить

  • Сокращённая формула для вычисления матрицы ковариации:
\mathrm{cov}(\mathbf{X}) = \mathbb{E}\left[\mathbf{X} \mathbf{X}^{\top}\right] - \mathbb{E}[\mathbf{X}] \cdot \mathbb{E}\left[\mathbf{X}^{\top}\right].
\mathrm{cov}(\mathbf{X}) \ge 0.
  • Смена масштаба:
\mathrm{cov}\left(\mathbf{a}^{\top} \mathbf{X}\right) = \mathbf{a}^{\top} \mathrm{cov}(\mathbf{X}) \mathbf{a},\; \forall \mathbf{a} \in \mathbb{R}^n.
\mathrm{cov}\left(\mathbf{A} \mathbf{X} + \mathbf{b}\right) = \mathbf{A} \mathrm{cov}(\mathbf{X}) \mathbf{A}^{\top},

где \mathbf{A} - произвольная матрица размера n \times n, а \mathbf{b}\in \mathbb{R}^n.

  • Перестановка аргументов:
\mathrm{cov}(\mathbf{X},\mathbf{Y}) = \mathrm{cov}(\mathbf{Y},\mathbf{X})^{\top}
  • Матрица ковариации аддитивна по каждому аргументу:
\mathrm{cov}(\mathbf{X}_1 + \mathbf{X}_2,\mathbf{Y}) = \mathrm{cov}(\mathbf{X}_1,\mathbf{Y}) + \mathrm{cov}(\mathbf{X}_2,\mathbf{Y}),
\mathrm{cov}(\mathbf{X},\mathbf{Y}_1 + \mathbf{Y}_2) = \mathrm{cov}(\mathbf{X},\mathbf{Y}_1) + \mathrm{cov}(\mathbf{X},\mathbf{Y}_2).
  • Матрица ковариации независимых векторов равна нулю. Если \mathbf{X} и \mathbf{Y} независимы, то
\mathrm{cov}(\mathbf{X},\mathbf{Y}) =  \mathbf{0}.pl:Macierz kowariancji

Викия-сеть

Случайная вики