Викия

Математика

Классификация (машинное обучение)

1457статей на
этой вики
Добавить новую страницу
Обсуждение0 Поделиться

Обнаружено использование расширения AdBlock.


Викия — это свободный ресурс, который существует и развивается за счёт рекламы. Для блокирующих рекламу пользователей мы предоставляем модифицированную версию сайта.

Викия не будет доступна для последующих модификаций. Если вы желаете продолжать работать со страницей, то, пожалуйста, отключите расширение для блокировки рекламы.

Классифика́ция — один из разделов машинного обучения, посвященный решению следующей задачи. Имеется множество объектов (ситуаций), разделённых некоторым образом на классы. Задано конечное множество объектов, для которых известно, к каким классам они относятся. Это множество называется обучающей выборкой. Классовая принадлежность остальных объектов не известна. Требуется построить алгоритм, способный классифицировать произвольный объект из исходного множества.

Классифици́ровать объект — значит, указать номер (или наименование класса), к которому относится данный объект.

Классифика́ция объекта — номер или наименование класса, выдаваемый алгоритмом классификации в результате его применения к данному конкретному объекту.

В математической статистике задачи классификации называются также задачами дискриминантного анализа.

В машинном обучении задача классификации относится к разделу обучения с учителем. Существует также обучение без учителя, когда разделение объектов обучающей выборки на классы не задаётся, и требуется классифицировать объекты только на основе их сходства друг с другом. В этом случае принято говорить о задачах кластеризации или таксономии, и классы называть, соответственно, кластерами или таксонами. В некоторых прикладных областях, и даже в самой математической статистике, существует тенденция называть задачи кластеризации задачами классификации.

Типология задач классификации Править

Типы входных данных Править

Классификацию сигналов и изображений называют также распознаванием образов.

Типы классов Править

  • Двухклассовая классификация. Наиболее простой в техническом отношении случай, который служит основой для решения более сложныхзадач.
  • Многоклассовая классификация. Когда число классов достигает многих тысяч (например, при распознавании иероглифов или слитной речи), задача классификации становится существенно более трудной.
  • Непересекающиеся классы.
  • Пересекающиеся классы. Объект может относиться одновременно к нескольким классам.
  • Нечёткие классы. Требуется определять степень принадлежности объекта каждому из классов, обычно это действительное число от 0 до 1.

Классификация: формальная постановка Править

Пусть X~ — множество описаний объектов, Y~ — множество номеров (или наименований) классов. Существует неизвестная целевая зависимость — отображение y^{*}\colon X\to Y, значнения которой известны только на объектах конечной обучающей выборки X^m = \{(x_1,y_1),\dots,(x_m,y_m)\}. Требуется построить алгоритм a\colon X\to Y, способный классифицировать произвольный объект x \in X.

Вероятностная постановка задачи Править

Более общей считается вероятностная постановка задачи. Предполагается, что множество пар «объект, класс» X \times Y является вероятностным пространством с неизвестной вероятностной мерой \mathsf P. Имеется конечная обучающая выборка наблюдений X^m = \{(x_1,y_1),\dots,(x_m,y_m)\}, сгенерированная согласно вероятностной мере \mathsf P. Требуется построить алгоритм a\colon X\to Y, способный классифицировать произвольный объект x \in X.

Признаковое пространство Править

Признаком называется отображение f\colon X\to D_f~, где D_f~ — множество допустимых значений признака. Если заданы признаки f_1,\dots,f_n~, то вектор {\mathbf x} = (f_1(x),\dots,f_n(x)) называется признаковым описанием объекта x\in X. Признаковые описания допустимо отождествлять с самими объектами. При этом множество X = D_{f_1}\times\dots\times D_{f_n} называют признаковым пространством.

В зависимости от множества D_f признаки делятся на следующие типы:

  • бинарный признак: D_f=\{0,1\};
  • номинальный признак: D_f — конечное множество;
  • порядковый признак: D_f — конечное упорядоченное множество;
  • количественный признак: D_f — множество действительных чисел.

Часто встречаются прикладные задачи с разнотипными признаками, для их решения подходят далеко не все методы.

Примеры прикладных задач Править

Задачи медицинской диагностики Править

В роли объектов выступают пациенты. Признаки характеризуют результаты обследований, симптомы заболевания и применявшиеся методы лечения. Примеры бинарных признаков: пол, наличие головной боли, слабости. Порядковый признак — тяжесть состояния (удовлетворительное, средней тяжести, тяжёлое, крайне тяжёлое). Количественные признаки — возраст, пульс, артериальное давление, содержание гемоглобина в крови, доза препарата. Признаковое описание пациента является, по сути дела, формализованной историей болезни. Накопив достаточное количество прецедентов в электронном виде, можно решать различные задачи:

  • классифицировать вид заболевания (дифференциальная диагностика);
  • определять наиболее целесообразный способ лечения;
  • предсказывать длительность и исход заболевания;
  • оценивать риск осложнений;
  • находить синдромы — наиболее характерные для данного заболевания совокупности симптомов.

Ценность такого рода систем в том, что они способны мгновенно анализировать и обобщать огромное количество прецедентов — возможность, недоступная специалисту-врачу.

Предсказание месторождений полезных ископаемых Править

Признаками являются данные геологической разведки. Наличие или отсутствие тех или иных пород на территории района кодируется бинарными признаками. Физико-химические свойства этих пород могут описываться как количественными, так и качественными признаками. Обучающая выборка составляется из прецедентов двух классов: районов известных месторождений и похожих районов, в которых интересующее ископаемое обнаружено не было. При поиске редких полезных ископаемых количество объектов может оказаться намного меньше, чем количество признаков. В этой ситуации плохо работают классические статистические методы. Задача решается путём поиска закономерностей в имеющемся массиве данных. В процессе решения выделяются короткие наборы признаков, обладающие наибольшей информативностью — способностью наилучшим образом разделять классы. По аналогии с медицинской задачей, можно сказать, что отыскиваются «синдромы» месторождений. Это важный побочный результат исследования, представляющий значительный интерес для геофизиков и геологов.

Оценивание кредитоспособности заёмщиков Править

Эта задача решается банками при выдаче кредитов. Потребность в автоматизации процедуры выдачи кредитов впервые возникла в период бума кредитных карт 60-70-х годов в США и других развитых странах. Объектами в данном случае являются физические или юридические лица, претендующие на получение кредита. В случае физических лиц признаковое описание состоит из анкеты, которую заполняет сам заёмщик, и, возможно, дополнительной информации, которую банк собирает о нём из собственных источников. Примеры бинарных признаков: пол, наличие телефона. Номинальные признаки — место проживания, профессия, работодатель. Порядковые признаки — образование, занимаемая должность. Количественные признаки — сумма кредита, возраст, стаж работы, доход семьи, размер задолженностей в других банках. Обучающая выборка составляется из заёмщиков с известной кредитной историей. В простейшем случае принятие решений сводится к классификации заёмщиков на два класса: «хороших» и «плохих». Кредиты выдаются только заёмщикам первого класса. В более сложном случае оценивается суммарное число баллов (scoreШаблон:Ref-en) заёмщика, набранных по совокупности информативных признаков. Чем выше оценка, тем более надёжным считается заёмщик. Отсюда и название — кредитный скоринг. На стадии обучения производится синтез и отбор информативных признаков и определяется, сколько баллов назначать за каждый признак, чтобы риск принимаемых решений был минимален. Следующая задача — решить, на каких условиях выдавать кредит: определить процентную ставку, срок погашения, и прочие параметры кредитного договора. Эта задача также может быть решения методами обучения по прецедентам.

Предсказание оттока клиентов Править

Оптическое распознавание символов Править

Распознавание речи Править

Обнаружение спама Править

Классификация документов Править

Методы решения Править

Ссылки Править

Литература Править

  1. Айвазян С. А., Бухштабер В. М., Енюков И. С., Мешалкин Л. Д. Прикладная статистика: классификация и снижение размерности. — М.: Финансы и статистика, 1989.
  2. Вапник В. Н. Восстановление зависимостей по эмпирическим данным. — М.: Наука, 1979.
  3. Журавлев Ю. И., Рязанов В. В., Сенько О. В. «Распознавание». Математические методы. Программная система. Практические применения. — М.: Фазис, 2006. ISBN 5-7036-0108-8.
  4. Загоруйко Н. Г. Прикладные методы анализа данных и знаний. — Новосибирск: ИМ СО РАН, 1999. ISBN 5-86134-060-9.
  5. Шлезингер М., Главач В. Десять лекций по статистическому и структурному распознаванию. — Киев: Наукова думка, 2004. ISBN 966-00-0341-2.
  6. Hastie T., Tibshirani R., Friedman J. The Elements of Statistical Learning. — Springer, 2001. ISBN 0-387-95284-5.
  7. Mitchell T. Machine Learning. — McGraw-Hill Science/Engineering/Math, 1997. ISBN 0-07-042807-7.


Категории Править

ar:تصنيف إحصائيlt:Klasifikavimo algoritmai

th:การแบ่งประเภทข้อมูล vi:Phân loại bằng thống kê

Викия-сеть

Случайная вики