Викия

Математика

Алгебраическая функция

1457статей на
этой вики
Добавить новую страницу
Обсуждение0 Поделиться

Обнаружено использование расширения AdBlock.


Викия — это свободный ресурс, который существует и развивается за счёт рекламы. Для блокирующих рекламу пользователей мы предоставляем модифицированную версию сайта.

Викия не будет доступна для последующих модификаций. Если вы желаете продолжать работать со страницей, то, пожалуйста, отключите расширение для блокировки рекламы.

Алгебраическая функция — функция, которая в окрестности каждой точки области определения может быть задана неявно с помощью алгебраического уравнения.

Более точное определение:

Функция \,\!F(x_1, x_2, \ldots, x_n) называется алгебраической в точке \,\!A=(a_1, a_2, \ldots, a_n), если существует окрестность точки \,\!A, в которой верно тождество

\,\!P( F(x_1, x_2, \ldots, x_n), x_1, x_2, \ldots, x_n) = 0.

где \,\!P есть многочлен от n+1 переменной.

Функция называется алгебраической, если она является алгебраической в каждой точке области определения.

Например, функция действительного переменного F(x) = \sqrt{1-x^2} является алгебраической на интервале (-1,1) в поле действительных чисел, так как она удовлетворяет уравнению

\,\!F^2 + x^2 = 1.

Существует аналитическое продолжение функции F(x) = \sqrt{1-x^2} на комплексную плоскость, с вырезанным отрезком [-1, 1] или с двумя вырезанными лучами (-\infty, -1] и [1,\infty). В этой области полученная функция компл'ексного переменного является алгебраической и аналитической.

Известно, что если функция является алгебраической в точке, то она является и аналитической в данной точке. Обратное неверно. Функции, являющиеся аналитическими, но не являющиеся алгебраическими, называются трансцендентными.


Алгебраические уравнения Править

Уравнение вида

\,\!P(x_1,\ldots,x_n) = Q(x_1, \ldots, x_n),

где P и Q многочлены с коэфициентами из поля рациональных чисел, называется алгебраическим уравнением.

Алгебраические и трансцендентные числа Править

Действительные числа, которые являются корнем какого-то алгебраического уравнения, называются алгебраическими. Действительные числа, которые не являются корнем никакого алгебраического уравнения, называются трансцендентными.

Все рациональные числа являются алгебраическими. Среди иррациональных чисел есть как алгебраические, так и трансцендентные. Например, \sqrt{2} — алгебраическое иррациональное число, а \,\!\pi — трансцендентное иррациональное число.

См. также Править

uk:Алгебраїчні функції

Викия-сеть

Случайная вики